matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolge Monotonie bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Folge Monotonie bestimmen
Folge Monotonie bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge Monotonie bestimmen: idee
Status: (Frage) beantwortet Status 
Datum: 10:24 Do 09.05.2013
Autor: originalswiss

Aufgabe
[mm] ((1/3)^n)-1 [/mm]

Hey ich muss die genante Aufgabe auf Monotonoie folgen und den Grenzwert bestimmen

Ich hab schon alles versucht sie zu lösen auch mit  dem Log.

Bin ich planlos

wäre für Hilfe dankbar :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folge Monotonie bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Do 09.05.2013
Autor: Diophant

Hallo und

[willkommenvh]

> [mm]((1/3)^n)-1[/mm]
> Hey ich muss die genante Aufgabe auf Monotonoie folgen und
> den Grenzwert bestimmen

>

Sicherlich meinst du die Folge

[mm] a_n=\left(\bruch{1}{3}\right)^n-1=\bruch{1}{3^n}-1 [/mm]

> Ich hab schon alles versucht sie zu lösen auch mit dem
> Log.

Bitte gib solche Versuche in Zukunft hier an, denn was soll man sich unter 'alles' vorstellen?

Für die Monotonie kannst du entweder die Differenz

[mm] a_{n+1}-a_n [/mm]

untersuchen (wenn sie negativ ist, ist die Folge streng monoton fallend), oder du untersuchst ersatzweise die Folge

[mm] b_n=\bruch{1}{3^n} [/mm]

da deren Monotonieverhalten sicherlich dem der zu untersuchenden Folge entspricht.

Beim Grenzwert untersuche ebenfalls

[mm] b_n=\bruch{1}{3^n} [/mm]

für [mm] n->\infty, [/mm] den Grenzwert muss man eigentlich ihn Rechnen sehen!


Gruß, Diophant




 

Bezug
        
Bezug
Folge Monotonie bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Do 09.05.2013
Autor: fred97


> [mm]((1/3)^n)-1[/mm]
>  Hey ich muss die genante Aufgabe auf Monotonoie folgen und
> den Grenzwert bestimmen
>  
> Ich hab schon alles versucht sie zu lösen


Echt ?


>  auch mit  dem
> Log.
>
> Bin ich planlos
>  
> wäre für Hilfe dankbar :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Ich stelle mir gerade vor, ich wäre völlig planlos. Ich würde mir dann die Definitionen vorknöpfen. Sei [mm] a_n=[/mm] [mm]((1/3)^n)-1[/mm].

Wenn [mm] (a_n) [/mm] monoton ist, so gibt es 2 Möglichkeiten:

1.  

      (*) [mm] a_{n+1} \ge a_n. [/mm]

Es stellt sich die Frage, ob das für jedes n richtig ist. Mit ganz elementaren Äquivalenzumformungen sehe ich dann:

     (*)    gilt genau dann, wenn 1 [mm] \ge [/mm] 3 ist.

2.  

      (*) [mm] a_{n+1} \le a_n. [/mm]

Es stellt sich die Frage, ob das für jedes n richtig ist. Mit ganz elementaren Äquivalenzumformungen sehe ich dann:

     (*)    gilt genau dann, wenn 1 [mm] \le [/mm] 3 ist.

Soviel zur Strategie, wenn man planlos ist.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]