matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolge als grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Folge als grenzwert
Folge als grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge als grenzwert: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 14.11.2011
Autor: NooB22222

Aufgabe
Es sei M [mm] \subset \IR [/mm] eine nichtleere und nach oben beschränkte Menge. Beweisen Sie: Es gilt s= sup M genau dann, wenn s ist eine obere Schranke von M ist und es eine Folge [mm] (a_{n}) [/mm] gibt mit [mm] a_{n} \in [/mm] m für alle n [mm] \in \IN [/mm] und [mm] \limes_{n\rightarrow\infty} a_{n} [/mm] = s.

[mm] "\Rightarrow" [/mm] diese Richtung ist nicht sehr schwer zu zeigen, da

Sei [mm] \varepsilon [/mm] > 0. Dann ist sup M - [mm] \varepsilon [/mm] < sup M , da sup M kleinste obere Schranke von M ist ist sup M - [mm] \varepsilon [/mm] keine obere Schranke von M damit ist s = sup M obere Schranke von M.

[mm] "\Leftarrow" [/mm] bei dieser Richtung wurde uns der tipp gegeben, das wir annehmen sollen, dass es eine kleinere obere Schranke gibt und es zum Wiederspruch bringen mein Problem ist nun wie ich das tuhe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folge als grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Di 15.11.2011
Autor: fred97

Schau mal hier.

https://matheraum.de/read?t=836961

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]