matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenz-transformationFolge finden Z-Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "z-transformation" - Folge finden Z-Transformation
Folge finden Z-Transformation < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge finden Z-Transformation: Idee?
Status: (Frage) beantwortet Status 
Datum: 15:11 So 26.06.2005
Autor: Becks

Hallo zusammen!

Wie man bei einer Folge herausfindet, ob sie Z-Transformierbar ist, meine ich verstanden zu haben. Aber wie man die Z-Transformierte aufstellt (siehe anderes Topic) oder für eine Z-Transformierte eine folge findet, da blicke ich nicht durch.
Ich habe zwei Z-Transformierte und soll dazu ne Folge finden.

1) [mm] (1+z²)*e^{-\bruch{1}{z}} [/mm]

2) [mm] \bruch{14z}{2z²+5z-3} [/mm]

Ich weiß nur, dass ich zu dieser Form: [mm] \summe_{n=0}^{+\infty}\bruch{a_{n}}{z^{n}} [/mm] kommen muss. Aber wie?

Habt ihr vielleicht eine Idee? Ich hab gar keine Idee wie ich auf die Summe komme bzw auf das [mm] z^{n}. [/mm]
Ich hoffe ihr könnt mir helfen. :)

Viele Grüße Becks

        
Bezug
Folge finden Z-Transformation: kleine Hilfestellung
Status: (Antwort) fertig Status 
Datum: 23:15 Mo 27.06.2005
Autor: kuroiya

Hallo Becks

Ich hab mir das mit der z-Transformation mal angeguckt und denke, das hier kann dir weiterhelfen:

zu a) Einfach einmal die Exponentialfunktion in Reihendarstellung schreiben:
[mm] exp(z)=\sum_{n=0}{\infty}\frac{z^n}{n!}. [/mm]

b) werde ich nun ein wenig detaillierter vorrechnen:

Wir haben ja die Formel [mm] \frac{14z}{2z^2 + 5z -3} [/mm]

Durch Partialbruchzerlegung erhalten wir:  [mm] \frac{14z}{2z^2 + 5z -3} [/mm] = [mm] 2z(\frac{2}{2z-1} [/mm] - [mm] \frac{1}{z + 3}) [/mm]

Dies können wir umformen auf [mm] 2(\frac{1}{1- \frac{1}{2z}} [/mm] - [mm] \frac{1}{1 - \frac{-3}{z}}) [/mm] und dadurch geometrische Reihen ansetzen:

[mm] 2(\frac{1}{1- \frac{1}{2z}} [/mm] - [mm] \frac{1}{1 - \frac{-3}{z}}) [/mm] = [mm] 2(\sum_{n=0}^{\infty}\frac{\frac{1}{2}^n}{z^n} [/mm] - [mm] \sum_{n=0}^{\infty}\frac{(-3)^n}{z^n}) [/mm] = [mm] \sum_{n=0}^{\infty}\frac{\frac{1}{2}^{n-1}- (-6)^n}{z^n} [/mm]

und schon haben wir die gewünschte Darstellung.

Bezug
                
Bezug
Folge finden Z-Transformation: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:03 Di 28.06.2005
Autor: Becks

Erstmal ganz ganz vielen Dank für deine Antwort. :)
Ich hatte schon die Hoffnung aufgegeben.

a)
Ich habe mal deinen Rat befolgt und setze einfach gemäß Definition ein und erhalte:

[mm] (1+z²)*\summe_{n=0}^{\infty}\bruch{z^{n}}{n!} [/mm] Aber das ist ja noch nicht meine Folge oder? Muss ich das weiter vereinfachen?

b)
hmm, da blicke ich noch gar nicht durch. Also wenn ich den Weg sehe, dann ist das ganz schlüssig, aber welche Idee steckt dahinter. Nach was muss ich umformen, damit ich so ne Folge bekomme?

Nochmal was anderes: (ne Folge aus meinem anderen Thread)
[mm] (\bruch{n²+2n}{2^{n}})_{n} [/mm]
Ich weiß nicht, wie ich daraus die Z-Transformierte finden soll. Das muss ja ein geschlossener Ausdruck werden. Hast du da vielleicht auch noch ne Hilfe für mich?

Bin dir für deine Hilfe sehr dankbar!

Viele Grüße Becks

Bezug
                        
Bezug
Folge finden Z-Transformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Fr 01.07.2005
Autor: matux

Hallo Becks!


Leider konnte Dir keiner hier mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]