matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolge monoton wachsend zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Folge monoton wachsend zeigen
Folge monoton wachsend zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge monoton wachsend zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Do 05.11.2009
Autor: steppenhahn

Aufgabe
Zeige:

[mm] $a_{n} [/mm] = [mm] \sqrt{n}*(\sqrt{n+1}-\sqrt{n})$ [/mm]

ist monoton wachsend.

Hallo!

Die obige Aufgabe ist mir schon insofern gelungen zu lösen, dass ich mit der Vermutung

[mm] $a_{n+1} [/mm] > [mm] a_{n}$ [/mm]

bis zum Punkt

[mm] $\frac{2*\sqrt{n+1}}{\sqrt{n+2}+\sqrt{n}} [/mm] > 1$

gekommen bin. Nur gestaltet es sich jetzt für mich sehr schwierig, "elegant" weiter fortzufahren, denn nun würde ich zu

[mm] $2*\sqrt{n+1} [/mm] > [mm] \sqrt{n+2}+\sqrt{n}$ [/mm]

umformen und nun durch zweimaliges quadrieren (beide Seiten positiv) zeigen,  dass die Ungleichung stimmt. Das wollte ich aber eigentlich nicht machen, sondern die wahre Aussage durch abschätzen herbeiführen, d.h. zeigen, dass

[mm] $\frac{2*\sqrt{n+1}}{\sqrt{n+2}+\sqrt{n}} [/mm] > ... > 1$

ist. Nur will es mir nicht gelingen, da ich wegen [mm] $\sqrt{n+2} [/mm] > [mm] \sqrt{n+1} [/mm] > [mm] \sqrt{n}$ [/mm] weder den Zähler noch den Nenner vernünftig abschätzen kann...

Hat jemand von euch eine Idee?

Vielen Dank für eure Hilfe,
Stefan

        
Bezug
Folge monoton wachsend zeigen: umformen
Status: (Antwort) fertig Status 
Datum: 15:06 Do 05.11.2009
Autor: Roadrunner

Hallo Stefan!


Man kann die Folge umformen zu:
[mm] $$a_n [/mm] \ = \ [mm] \bruch{1}{\wurzel{1+\bruch{1}{n}}+1}$$ [/mm]
Kommst Du nun besser klar? Immerhin ist der Term im Nenner monoton fallend.


Gruß vom
Roadrunner


Bezug
                
Bezug
Folge monoton wachsend zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Fr 06.11.2009
Autor: steppenhahn

Hallo Roadrunner,

danke für deinen Hinweis :-) . Habe nacheinander gezeigt, dass [mm] \frac{1}{n} [/mm] monoton fallend, dann 1 + [mm] \frac{1}{n}, [/mm] folglich auch die Wurzel davon usw.,
und somit der gesamte Bruch monoton wachsend sein muss.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]