matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgeglieder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Folgeglieder
Folgeglieder < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgeglieder: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:27 Mo 28.11.2005
Autor: hab-ne-frage

Hallo,

ich soll folgende Aufgaben lösen:

a) Es sei [mm] (a_{n}) [/mm] eine Folge mit positiven Folgegliedern [mm] a_{n}. [/mm] Gibt es eine Konstante c < 1 und ein N [mm] \in \IN [/mm] mit  [mm] \bruch{a_{n}+1}{a_{n}} \le [/mm] c für n [mm] \ge [/mm] N, so ist [mm] (a_{n}) [/mm] eine Nullfolge.

b) Für jedes k [mm] \in \IN [/mm] und jede reelle Zahl b >1 ist  [mm] \bruch{b^{k}}{b^{n}}_{n \ge1} [/mm] eine Nullfolge.

c) für jede reelle Zahl b ist  [mm] \bruch{b^{n}}{n!}_{n \ge1} [/mm] eine Nullfolge.

d) für jede natürliche Zahl k ist ( [mm] \vektor{n \\ k} \bruch{1}{2^{n}}_{n \ge1} [/mm] eine Nullfolge.

Ich muss hier mit der Konvergenz rechnen, ein N in Abhängigkeit von  [mm] \varepsilon [/mm] wählen usw., aber ich weiß einfach nicht wie ich anfangen soll.

Vielleicht kann mir jemand helfen.


        
Bezug
Folgeglieder: Versuch zu a)
Status: (Antwort) fertig Status 
Datum: 10:53 Di 29.11.2005
Autor: saxneat

Tach hab ne frage!

denke mal das +1 im Zähler gehört in den Index da ansonsten ein Widerspruch zu [mm] c\le [/mm] 1 entsteht
[mm] \bruch{a_{n}+1}{a_{n}}=1+\bruch{1}{a_{n}}\ge [/mm] 1

weiß nich ob das auch mit nem Epsilonbeweis geht aber es reicht doch bestimmt aus wenn du Ausagen über späte [mm] a_{n} [/mm] machen kannst und diese durch zwei Nullfolgen einschließt.

da [mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] c , c<1 ist [mm] a_{n} [/mm] streng monoton fallend
und wegen [mm] a_{n}>0 [/mm] ist die Existenz eines Grenzwertes gesichert.

Schaun wir mal was man über späte n sagen kann.

[mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] c [mm] \Rightarrow a_{n+1}\le c*a_{n} [/mm]

[mm] \bruch{a_{n+2}}{c*a_{n}}\le\bruch{a_{n+2}}{a_{n+1}}\le [/mm] c  [mm] \Rightarrow a_{n+2}\le c^{2}*a_{n} [/mm]

[mm] \bruch{a_{n+n}}{c^{n-1}*a_{n}}\le\bruch{a_{n+n}}{a_{n+n-1}}\le [/mm] c  [mm] \Rightarrow 0
wenn du nun [mm] a_{n} [/mm] als Konstante auffässt oder durch z.B. die nächst größere natürliche Zahl nach oben Abschätzt erhätst du:

[mm] \Rightarrow 0
und da [mm] c^{n}*K\to [/mm] 0 [mm] a_{n} [/mm] auch eine Nullfolge

hoffe ich konnte helfen

MfG
saxneat

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]