matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 26.10.2009
Autor: v0nny

Aufgabe
Folge: {an} [mm] n\in\IN [/mm] , definiert durch a0=1 und

an+1= 3a²+2/4an für [mm] n\in\IN [/mm]

Es sei eine Funktion f: [mm] \IR+ \to \IR+ [/mm] definiert durch f(x)= 3x²+2/4x

Jetzt soll ich zeigen, dass f wachsend ist auf [1, [mm] \infty) [/mm] und dass für alle x [mm] \in [/mm] [1, [mm] \wurzel{2}] [/mm] filt f(x) [mm] \in [/mm] [1, [mm] \wurzel{2}]. [/mm]

Kann mir vllt jemand nen Tipp geben oder vielleicht erklären wie das geht?
Danke schonmal!!!





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mo 26.10.2009
Autor: angela.h.b.


> Folge: {an} [mm]n\in\IN[/mm] , definiert durch a0=1 und
>  
> an+1= 3a²+2/4an für [mm]n\in\IN[/mm]
>  
> Es sei eine Funktion f: [mm]\IR+ \to \IR+[/mm] definiert durch f(x)=
> 3x²+2/4x
>  Jetzt soll ich zeigen, dass f wachsend ist auf [1, [mm]\infty)[/mm]
> und dass für alle x [mm]\in[/mm] [1, [mm]\wurzel{2}][/mm] filt f(x) [mm]\in[/mm] [1,
> [mm]\wurzel{2}].[/mm]
>  
> Kann mir vllt jemand nen Tipp geben oder vielleicht
> erklären wie das geht?

Hallo,

da bietet es sich doch an, mit der 1. Ableitung von f zu arbeiten, falls Ihr bereits differenzieren könnt.
Woran erkennst Du, ob f monoton wachsend ist?

Die Frage wurde hier übrigens schon gestellt.

ich hab's  nicht weiter verfolgt, bin mir aber sicher, daß Du dort nützliches findest.

Falls Du noch weitere Fragen hast, stelle sie bitte in dem anderen Thread, damit di Aufgabe zur selben Zeit nur an einer Stelle bearbeitet wird.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]