matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Grenzwert
Status: (Frage) beantwortet Status 
Datum: 22:35 Fr 25.05.2012
Autor: ConstantinJ

Aufgabe
Bestimmen Sie folgenden Grenzwert:

[mm] c)\limes_{n\rightarrow\infty}((n+2)^{5} 2^{n})/3^{n+2}) [/mm]

Also ich hab da meine Probleme mit "hoch n".
Ich weiß , dass der Grenzwert 0 ist,weiß aber nicht wie ich dies rechnerisch zeige.

mfg

ConstantinJ

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Fr 25.05.2012
Autor: Schadowmaster

moin,

Es wäre nett, wenn du der Übersichtlichkeit halber den Formeleditor aus dem Forum verwenden könntest.
Davon abgesehen versuch mal aus deinem Bruch [mm] $\left( \frac{2}{3}\right) [/mm] ^n$ rauszuziehen.
Dann hast du hoffentlich einen Satz der dir sagt, dass exponentiell schneller wächst als polynominiell; wenn nicht dann kannst du das Produkt, das du erhälst, ggf. abschätzen.

lg

Schadow

Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Sa 26.05.2012
Autor: fred97


> Bestimmen Sie folgenden Grenzwert:
>  
> [mm]c)\limes_{n\rightarrow\infty}((n+2)^{5} 2^{n})/3^{n+2})[/mm]
>  
> Also ich hab da meine Probleme mit "hoch n".
> Ich weiß , dass der Grenzwert 0 ist,weiß aber nicht wie
> ich dies rechnerisch zeige.

Zeige, dass die Reihe [mm] \sum ((n+2)^{5} 2^{n})/3^{n+2}) [/mm] konvergiert.

FRED

>
> mfg
>
> ConstantinJ  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]