matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen auf Konvergenz prüfen .
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Folgen auf Konvergenz prüfen .
Folgen auf Konvergenz prüfen . < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen auf Konvergenz prüfen .: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mi 14.11.2007
Autor: U-Gen

Aufgabe
Untersuchen Sie die folgenden Folgen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

[mm] a_n [/mm] = [mm] 2^{n} [/mm] * [mm] n^{-2} [/mm]

[mm] b_n [/mm] = n [mm] \left( \wurzel{1 + \bruch{1}{n}} - \wurzel{1 - \bruch{1}{n}}\right) [/mm]

[mm] c_n [/mm] = [mm] \left( 1 + \bruch{1}{n}\right)^{n²} [/mm]

[mm] d_n [/mm] = [mm] \sqrt[n]{n(n + 1) ... (n + k)} [/mm] , k [mm] \in \IN [/mm] fest

Die [mm] a_n [/mm] Folge hab ich mit dem Minorantenkriterium bewiesen. Hab mir [mm] \bruch{n³}{n²} [/mm] als divergente Minorante gewählt und mit Induktion gezeigt, dass [mm] \bruch{2^{n}}{n²} \ge \bruch{n³}{n²} [/mm] ist.

Die [mm] b_n [/mm] Folge einfach erweitert mit [mm] \left( \bruch{\wurzel{1 + \bruch{1}{n}} + \wurzel{1 - \bruch{1}{n}}}{\wurzel{1 + \bruch{1}{n}} + \wurzel{1 - \bruch{1}{n}}}\right) [/mm] und ausgerechnet, dass die Folge gegen 1 konvergiert.

Folge [mm] c_n [/mm] aufgeteilt, weil [mm] \left(1 + \bruch{1}{n}\right)^{n} [/mm] = e ist. Somit konvergiert die Folge gegen e².

Komme jetzt nur nicht bei der Folge [mm] d_n [/mm] klar. Würde mich freuen wenn mir jemand dabei helfen könnte !

Vielen Dank

        
Bezug
Folgen auf Konvergenz prüfen .: Hinweise
Status: (Antwort) fertig Status 
Datum: 02:07 Sa 17.11.2007
Autor: Loddar

Hallo U-Gen!




> Die [mm]a_n[/mm] Folge hab ich mit dem Minorantenkriterium
> bewiesen. Hab mir [mm]\bruch{n³}{n²}[/mm] als divergente Minorante
> gewählt und mit Induktion gezeigt, dass [mm]\bruch{2^{n}}{n²} \ge \bruch{n³}{n²}[/mm] ist.

[ok]

  

> Die [mm]b_n[/mm] Folge einfach erweitert mit [mm]\left( \bruch{\wurzel{1 + \bruch{1}{n}} + \wurzel{1 - \bruch{1}{n}}}{\wurzel{1 + \bruch{1}{n}} + \wurzel{1 - \bruch{1}{n}}}\right)[/mm]
> und ausgerechnet, dass die Folge gegen 1 konvergiert.

[ok]

  

> Folge [mm]c_n[/mm] aufgeteilt, weil [mm]\left(1 + \bruch{1}{n}\right)^{n}[/mm] = e ist.
> Somit konvergiert die Folge gegen e².

[notok] Denn es gilt gemäß MBPotenzgesetz:

[mm] $$c_n [/mm] \ = \ [mm] \left(1+\bruch{1}{n}\right)^{n^2} [/mm] \ = \ [mm] \left(1+\bruch{1}{n}\right)^{n*n} [/mm] \ = \ [mm] \left[\left(1+\bruch{1}{n}\right)^n\right]^n$$ [/mm]

  

> Komme jetzt nur nicht bei der Folge [mm]d_n[/mm] klar. Würde mich
> freuen wenn mir jemand dabei helfen könnte !

Zerlege hier wie folgt und betrachte einzeln:

[mm] $$d_n [/mm] \ = \ [mm] \wurzel[n]{n*(n+1)*(n+2)*...*(n+k)} [/mm] \ = \ [mm] \wurzel[n]{n}*\wurzel[n]{n+1}*\wurzel[n]{n+2}*...*\wurzel[n]{n+k}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]