matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolgen und Grenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Folgen und Grenzwerte
Folgen und Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Grenzwerte: Aufgabe 1 und 2
Status: (Frage) beantwortet Status 
Datum: 22:33 Mi 07.12.2011
Autor: Johnnycash

Aufgabe
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]


Bei Aufgabe 1 brauche ich nur bei aufgabenteil c und d hilfe.
Ich könnte doch bei aufgaben teil c die Gleichung ableiten und würde dann die folge erkennen,aber wir dürfen nicht ableiten. Und bei aufgabenteil d habe ich die gleichung so lange umgeformt gehabt, bis ich das hatte was im bild 2 zu sehen ist,aber wenn ich jetzt für n unendlich einsetze, dann geht zwar alles gegen null...aber ich darf unendlich nicht mit null multiplizieren,wodurch ich auch hier auf keine folge komme.

Bei Aufgabe 2 habe ich leider nicht den leisesten schwimmer wo ich anfangen soll, vll könnt ihr mir einen ansatz geben bitte.

Bei Aufgabe3
habe ich genau das gleiche problem wie in aufgabe 2 ..ich weiss ich soll folgen geben , für die diese bedingungen gelten, aber ehrlich gesagt versteh ich die bedingungen nicht richtig :S


Vielen Dank im Vorraus für jede Antwort !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Folgen und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mi 07.12.2011
Autor: fencheltee


> [Dateianhang nicht öffentlich]
>  [Dateianhang nicht öffentlich]
>  
> Bei Aufgabe 1 brauche ich nur bei aufgabenteil c und d
> hilfe.
>  Ich könnte doch bei aufgaben teil c die Gleichung
> ableiten und würde dann die folge erkennen,aber wir
> dürfen nicht ableiten. Und bei aufgabenteil d habe ich die
> gleichung so lange umgeformt gehabt, bis ich das hatte was
> im bild 2 zu sehen ist,aber wenn ich jetzt für n unendlich
> einsetze, dann geht zwar alles gegen null...aber ich darf
> unendlich nicht mit null multiplizieren,wodurch ich auch
> hier auf keine folge komme.

hallo, die werte 0 und [mm] \infty [/mm] darfst du so nicht hinschreiben. in der dritten zeile von der aufgabe 1 d) "sieht" man schon, dass es [mm] 0*\infty [/mm] wird. ab dort muss man probieren, auf die form 0/0 bzw [mm] \infty/\infty [/mm] zu kommen.
in dem aus z.B. [mm] a*b=\frac{a}{\frac{1}{b}} [/mm] wird. reihenfolge mal ausprobieren und l'hopital anwenden.

>  
> Bei Aufgabe 2 habe ich leider nicht den leisesten schwimmer
> wo ich anfangen soll, vll könnt ihr mir einen ansatz geben
> bitte.

a) naja, die folge [mm] a_n=\frac{1}{n} [/mm] wäre das trivialste beispiel
b) schau dir mal die folge [mm] \frac{1}{3^n} [/mm] an. was fällt auf?

>  
> Bei Aufgabe3
>  habe ich genau das gleiche problem wie in aufgabe 2 ..ich
> weiss ich soll folgen geben , für die diese bedingungen
> gelten, aber ehrlich gesagt versteh ich die bedingungen
> nicht richtig :S
>

a) [mm] a_n= 1/n^3, b_n=n^2 [/mm]
b) [mm] a_n= [/mm] 1/n, [mm] b_n=n^2 [/mm]

>
> Vielen Dank im Vorraus für jede Antwort !
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

gruß tee

Bezug
                
Bezug
Folgen und Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Do 08.12.2011
Autor: Johnnycash

Danke für deine schnelle Antwort, aber ich darf bei aufgabe 1 "regel von l`hopital" nicht anwenden ...geht das nicht vielleicht auch anders auf konventionellem wege ?

gruß cash

Bezug
                        
Bezug
Folgen und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 08.12.2011
Autor: fred97

Ich nehme an, Du bist bei [mm] a_n=(1+\bruch{1}{ln(n)})^{n} [/mm]

Mit der Bernoullischen Ungl. ist

                  [mm] a_n \ge 1+\bruch{n}{ln(n)} [/mm]

Jetzt überlege Dir noch, dass [mm] \bruch{n}{ln(n)} \ge \wurzel{n} [/mm] ist

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]