matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen und Ihre Eigenschaften
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Folgen und Ihre Eigenschaften
Folgen und Ihre Eigenschaften < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Ihre Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 14.11.2013
Autor: hamade9

Aufgabe
Gebe sie an, ob die Aussage zutreffend oder falsch ist. Geben Sie ein Gegenbeispiel an, falls es sich um eine Falsche handelt.
  1.Jede monoton wachsende Folge konvergiert gegen [mm] \inf [/mm] fuer n gegen [mm] \infty [/mm] .
  2.Jede beschränkte Folge konvergiert gegen eine Zahl in [mm] \IR [/mm] für n gegen [mm] \infty [/mm] .

Ich bin dazu gekommen, dass beide falsch sind, aber fallen euch vielleicht ein paar Gegenbeispiele ein?

Gruß Ibo

        
Bezug
Folgen und Ihre Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 14.11.2013
Autor: reverend

Hallo Ibo,

> Gebe sie an, ob die Aussage zutreffend oder falsch ist.
> Geben Sie ein Gegenbeispiel an, falls es sich um eine
> Falsche handelt.
>    1.Jede monoton wachsende Folge konvergiert gegen [mm]\inf[/mm]

Was heißt das? Tippfehler? Meinst Du "infinity" (infty) oder Infimum?

> fuer n gegen [mm]\infty[/mm] .
>    2.Jede beschränkte Folge konvergiert gegen eine Zahl in
> [mm]\IR[/mm] für n gegen [mm]\infty[/mm] .
> Ich bin dazu gekommen, dass beide falsch sind,

Stimmt.

> aber fallen
> euch vielleicht ein paar Gegenbeispiele ein?

Na klar, die sind doch einfach zu konstruieren.
Zu 1) Nimm eine konvergente, aber monoton wachsende Folge.
Zu 2) Nimm eine Folge, die mehr als einen Häufungspunkt hat.

Komm, das kannst Du selbst...

Grüße
reverend


Bezug
                
Bezug
Folgen und Ihre Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Do 14.11.2013
Autor: hamade9

Ich habs versucht... ich hab an eine folge gedacht bei der das erste n glied den wert 1 hat und sich dann umm doppelt... damjt meine ich n gleich 2 ist 1,5 und n gleich 3 1,75.....
Ich kann die aber irgendwie nicht konstruieren :/

Grüße ibo

Bezug
                        
Bezug
Folgen und Ihre Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 14.11.2013
Autor: reverend

Hallo nochmal,

> Ich habs versucht... ich hab an eine folge gedacht bei der
> das erste n glied den wert 1 hat und sich dann umm
> doppelt... damjt meine ich n gleich 2 ist 1,5 und n gleich
> 3 1,75.....
>  Ich kann die aber irgendwie nicht konstruieren :/

Na, konstruiert hast Du sie damit ja schon, nur noch nicht mathematisch formuliert.

Entweder rekursiv: [mm] a_1=1, a_{n+1}=a_n+\bruch{1}{2^{n-1}} [/mm]

...oder gleich so: [mm] a_n=2-\bruch{1}{2^{n-1}} [/mm]

Noch schöner, wenn nicht das Folgenglied Nr.1 die 1 ist, sondern alle einen nach links verschoben werden, also mit [mm] a_0=1 [/mm] und [mm] a_1=1,5 [/mm] etc.

Dann wäre das Bildungsgesetz: [mm] a_n=2-2^{-n} [/mm]

So, das wäre also das Gegenbeispiel zu 1).

Da hätte aber auch [mm] a_n=5174-\bruch{1}{n} [/mm] gereicht... Oder vielleicht statt 5174 einfach eine 1. ;-)

Und das andere Gegenbeispiel - hast Du da schon eine Idee?

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]