matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen und reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Folgen und reihen
Folgen und reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und reihen: Anstoß vielleicht Lösung
Status: (Frage) beantwortet Status 
Datum: 16:05 Mo 18.12.2006
Autor: Schluse

Aufgabe
Die Fördermenge einer Ölquelle wurde von der betreibenden Firma jährlich um 8% erhöht. Aus den Unterlagen ergibt sich, dass im 10. Jahr ca 109,945 m³ gefördert wurde.
Wie hoch ist die Fördermenge im 1. Jahr?
Am Ende des 15. Jahres ist das Ölvorkommen aufgebraucht!
Wie hoch war es insgesamt??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
so meine Frage ist jetzt erstmal....kann man dies mit der Formel für die geometrischen Folgen oder die arithmetischen Folgen nimmt...
Im prinzip versteh ich die ganze Aufgabe nicht....
Ich hoffe mir kann ein Anstoß gegeben werden...ist wirklich wichtig...

Vielen Dank im vorraus

        
Bezug
Folgen und reihen: geometrische Folge
Status: (Antwort) fertig Status 
Datum: 16:32 Mo 18.12.2006
Autor: Loddar

Hallo Schluse,

[willkommenmr] !!


Das Stichwort mit "geometrischer Folge" hast Du ja bereits selber gegeben.

Diese hat die allgemeine Form: [mm] $a_n [/mm] \ = \ [mm] a_1*q^{n-1}$ [/mm]


Zudem benötigen wir hier auch die Summenformel:   [mm] $s_n [/mm] \ = \ [mm] a_1*\bruch{q^n-1}{q-1}$ [/mm]


Durch die Angabe mit der 8%-igen Steigerung wissen wir: $q \ = \ [mm] 1+\bruch{8}{100} [/mm] \ = \ 1.08$


Nun setzen wir ein: [mm] $a_{10} [/mm] \ = \ 109.945 \ =\ [mm] a_1*1.08^{10-1} [/mm] \ = \ [mm] a_1*1.08^9$ [/mm]

Kannst Du das nach [mm] $a_1$ [/mm] auflösen?


Bei der 2. Teilaufgaben ist ja gefragt wieviel sowohl im ersten als auch im zweiten als auch dritten ... bis zum 15. Jahr gefördert wurde.

Also in die Summenformel einsetzen mit $n \ = \ 15$ .


Gruß
Loddar


Bezug
                
Bezug
Folgen und reihen: Frage zu Antwort
Status: (Frage) beantwortet Status 
Datum: 16:45 Mo 18.12.2006
Autor: Schluse

das habe ich soweit verstanden...
allerdings erscheint mir das Erbegnis für a1  sehr unreealistisch....da es immer weniger wird....quasi irgendwas mit 55...

ist das Ergebnis denn reealistisch...

Bezug
                        
Bezug
Folgen und reihen: stimmt aber!
Status: (Antwort) fertig Status 
Datum: 16:49 Mo 18.12.2006
Autor: Loddar

Hallo Schluse!


[mm] $a_1 [/mm] \ = \ 55 \ [mm] \text{m}^3$ [/mm] ist richtig [ok] .


Gruß
Loddar


Bezug
                                
Bezug
Folgen und reihen: Super noch ne Frage
Status: (Frage) beantwortet Status 
Datum: 16:52 Mo 18.12.2006
Autor: Schluse

warum ist denn q 1,08 und nicht 0,08....
dachte man rechnet nur +1 bei z.B Zinseszinsaufgaben

Aber vielen vielen dank....

Bezug
                                        
Bezug
Folgen und reihen: Erläuterung
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 18.12.2006
Autor: Loddar

Hallo Schluse!


Wenn wir zu Beginn [mm] $a_1$ [/mm] haben und dazu (also zusätzlich!) kommen noch [mm] $8\%$ [/mm] von diesem [mm] $a_1$ [/mm] , dann haben wir doch insgesamt im darauffolgenden Jahr:

[mm] $a_2 [/mm] \ = \ [mm] a_1+8\%*a_1 [/mm] \ = \ [mm] a_1+\bruch{8}{100}*a_1 [/mm] \ = \ [mm] a_1+0.08*a_1 [/mm] \ = \ [mm] a_1*(1+0.08) [/mm] \ = \ [mm] a_1*1.08$ [/mm]


Nun klar(er)? Das ist im Prinzip auch genau wie in der Zinseszinsrechnung.


Gruß
Loddar


Bezug
                                                
Bezug
Folgen und reihen: Daaannnnkkeee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mo 18.12.2006
Autor: Schluse

Ich danke dir wirklich sehr



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]