matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgendarstellung d. Expfkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Folgendarstellung d. Expfkt.
Folgendarstellung d. Expfkt. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgendarstellung d. Expfkt.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:04 Di 28.10.2008
Autor: Azarazul

Hi,
ich stolperte eben bei wikipedia, im Artikel über die Exponentialfunktion
http://de.wikipedia.org/wiki/Exponentialfunktion
darüber, wie dort die Konvergenz der Folgendarstellung der Exponentialfunktion gezeigt wird - weil ich das selbst versuchte zu zeigen (aber es nur mit Hilfe der Reihendarstellung geschafft habe).

Dort wird gesagt, dass die Monotonie mit Hilfe der Ungleichung vom arithm. und geom. Mittel folgt - die ist mir bekannt. Leider fehlt mir gerade ein bisschen das Verständnis für die Anwendung in diesem Fall.
Zur Monotonie der Folgendarstellung ist zu zeigen:
[mm] (a_n)_n :=\limes_{n\rightarrow\infty}(1+\bruch{x}{n})^n[/mm]
[mm] a_n \le a_{n+1} [/mm]
Auf Wiki folgt für [mm] n > |x| [/mm] dann:
[mm]\wurzel[n+1]{(1+\bruch{x}{n})^n * 1} \le \bruch{n(1+\bruch{x}{n})+1}{n+1} = 1 +\bruch{x}{n+1}[/mm]
so - und wieso kann ich hier jetzt die Ungl. vom Geom. & arithm Mittel benutzen ? Und vor allem in der Form, wie es dort, bei Wiki geschieht ?

(Frage 2:  Kann ich das eigentlich auch per Induktion zeigen ? Sieht da jemand eine Möglichkeit für den IS?)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dank & Gruß,
aza

        
Bezug
Folgendarstellung d. Expfkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Di 28.10.2008
Autor: Azarazul

Blöde Frage ich sehe es selbst - das hinschreiben hat geholfen ...
$ [mm] \wurzel[n+1]{(1+\bruch{x}{n})^n \cdot{} 1} \le [/mm]  1 [mm] +\bruch{x}{n+1} [/mm] | [mm] ()^{n+1} \Rightarrow (1+\bruch{x}{n})^n \le (1+\bruch{x}{n+1})^{n+1} [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]