matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFormel für Papierformate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Formel für Papierformate
Formel für Papierformate < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für Papierformate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 31.07.2006
Autor: Faronel

Aufgabe
Die Folge der DIN-A-Papierformate ist wie folgt definiert:

Din A0 ist ein Rechteck mit dem Seitenverhältnis  [mm] \wurzel{2}:1 [/mm] und der Fläche [mm] 1m^{2}. [/mm]

Din Ak, k  [mm] \ge [/mm] 1, entsteht aus DIN A(k - 1), indem die längere Seite des Rechtecks halbiert wird.

Berechnen Sie die Länge [mm] l_{k} [/mm] und die Breite [mm] b_{k} [/mm] des DIN Ak-Formates sowie das Verhältnis [mm] l_{k} [/mm] / [mm] b_{k}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen.
Ich verstehe nicht, wie ich die Formel für die Papierformate generieren kann. Die Lösung habe ich vorliegend.

Lösung:
-----
[mm] b_{0} [/mm] = a, [mm] l_{0} [/mm] = [mm] \wurzel{2}a [/mm]  und [mm] b_{0}l_{0} [/mm] = [mm] \wurzel{2}a^{2} [/mm] = [mm] 1m^{2} \Rightarrow [/mm] a =  [mm] \bruch{1}{ \wurzel[4]{2}} [/mm]
[mm] l_{k} [/mm] = [mm] b_{k-1}, b_{k} [/mm] = [mm] \bruch{l_{k-1}}{2} [/mm] für k [mm] \ge [/mm] 1
Also [mm] b_{k} [/mm] = [mm] \bruch{a}{(\wurzel{2})^{k}} [/mm] und [mm] l_{k}=\bruch{\wurzel{2}a}{(\wurzel{2})^{k}} [/mm] für k [mm] \ge [/mm] 0
[mm] \bruch{l_{k}}{b_{k}} [/mm] = [mm] \wurzel{2}, b_{k} [/mm] = [mm] \bruch{1m}{(\wurzel{2})^{k+\bruch{1}{2}}}, l_{k}= \bruch{1m}{(\wurzel{2})^{k-\bruch{1}{2}}} [/mm]
-----

Wie komme ich auf diese Formel nach "Also"? Ich habe mir schon lange den Kopf darüber zerbrochen, aber werde einfach nicht schlau!

Vielen Dank für eure Hilfe

        
Bezug
Formel für Papierformate: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mo 31.07.2006
Autor: Barncle

Also erstmal möcht ich sagen, dass die verwendung von k bei dir verdammt anstrengend ist! Während nämlich in der Angabe k [mm] \re [/mm] 1 ist, ist es dann in der lösung nicht so... nunja... wie dem auch sei!

Um auf das Ergebnis nach dem also zu kommen, brauchst du (zumindest hab ichs nicht anders geschaft) eine definition von [mm] b_k [/mm] oder [mm] l_k. [/mm] Die hab ich bekommen, indem ich sie mir einfach ausgerechnet hab also:
[mm] b_0 [/mm] = a,  [mm] b_1 [/mm] = [mm] \bruch{a}{\wurzel{2}}, b_2 [/mm] = [mm] \bruch{a}{2} [/mm]

daraus sieht man dann, dass:  

[mm] b_k [/mm] = [mm] \bruch{a}{\wurzel{2}^k} [/mm]

ja und nun kann man aus

[mm] l_k [/mm] = [mm] b_{k-1}, l_k [/mm] = [mm] \bruch{a}{\wurzel{2}^{k-1}} [/mm] oder eben [mm] l_k [/mm] = [mm] \bruch{\wurzel{2}a}{\wurzel{2}^k} [/mm]


Gut um dir mit dem rest noch zu helfen, musst du mir verraten, was das ominöse m in den letzten 2 Formeln sein soll!?


Bezug
                
Bezug
Formel für Papierformate: Erklärung m und k
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mo 31.07.2006
Autor: Faronel

k wird nicht als 1 definiert. Es lautet k [mm] \ge [/mm] 1.

Das m ist die Einheit (Meter). Zuvor wurde a berechnet: [mm] b_{0}l_{0} [/mm] = [mm] \wurzel{2}a^{2} [/mm] = 1 [mm] m^{2} \Rightarrow [/mm] a = [mm] \bruch{1}{\wurzel[4]{2}}m [/mm]

Bezug
        
Bezug
Formel für Papierformate: asooo!
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 31.07.2006
Autor: Barncle

Na wenn das nur die Einheit ist, dann passt eh alles!

also auf die letzten Ergebnisse kommst du eh einfach, wenn du für a [mm] \bruch{1}{\wurzel[4]{2}} [/mm]

Bei dir in der lösung ist es nur blöd angeschrieben! Schreibs um auf

[mm] b_k [/mm] = [mm] \bruch{1}{2^{\bruch{k}{2} + \bruch{1}{4}}} [/mm]

[mm] l_k [/mm] = [mm] \bruch{1}{2^{\bruch{k}{2} - \bruch{1}{4}}} [/mm]

und es ist besser zu sehen!
gut... damit ist es hoffentlich geschafft, und dir geholfen! :)


Bezug
                
Bezug
Formel für Papierformate: alles klar!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 Di 01.08.2006
Autor: Faronel

Vielen Dank für deine Hilfe!

Ich habe meinen Gedankenfehler erkannt. Ich ging davon aus, dass man mit Umformen und dergleichen auf diese Formeln kommt. Da du aber die ersten paar Glieder aufgeschrieben hast, und dann mit guter Intuition sozusagen die explizite Formel für die Breite bzw. Höhe "gefunden" hast, macht mir das ganze jetzt viel mehr Sinn.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]