matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFormel für die totale W'keit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Formel für die totale W'keit
Formel für die totale W'keit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für die totale W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 07.12.2010
Autor: kuemmelsche

Hallo zusammen,

mir geht es um die Formel für die totale Wahrscheinlichkeit, aber mit bedingten W'keiten:

Seien [mm] $X_0$, $X_1$ [/mm] zwei reelle Zufallsvariablen, [mm] $B_0$, $B_1$ [/mm] zwei Borel-Mengen.

Dann suche ich eine Begründung, warum
[mm]P(X_0 \in B_0,X_1 \in B_1)=\integral_{\Omega}^{}{ \mathbb{I}_{ \{X_0 \in B_0 \} }(\omega) P(X_1 \in B_1 | X_0)(\omega) P(d\omega)}[/mm].
Ich sehe schon die Ähnlichkeit zur "naiven" Formel für die totale W'keit, aber wie kann ich das denn hier formal beweisen.

Man hat mir geraten Fubini zu nehmen, aber ich sehe absolut nicht wie...

Kann mir jemand helfen?

Danke schonmal!

lg Kai



        
Bezug
Formel für die totale W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Mi 08.12.2010
Autor: Marc

Hallo Kai,

> mir geht es um die Formel für die totale
> Wahrscheinlichkeit, aber mit bedingten W'keiten:
>  
> Seien [mm]X_0[/mm], [mm]X_1[/mm] zwei reelle Zufallsvariablen, [mm]B_0[/mm], [mm]B_1[/mm] zwei
> Borel-Mengen.
>  
> Dann suche ich eine Begründung, warum
> [mm]P(X_0 \in B_0,X_1 \in B_1)=\integral_{\Omega}^{}{ \mathbb{I}_{ \{X_0 \in B_0 \} }(\omega) P(X_1 \in B_1 | X_0)(\omega) P(d\omega)}[/mm].
>  
>  Ich sehe schon die Ähnlichkeit zur "naiven" Formel für
> die totale W'keit, aber wie kann ich das denn hier formal
> beweisen.
>  
> Man hat mir geraten Fubini zu nehmen, aber ich sehe absolut
> nicht wie...
>  
> Kann mir jemand helfen?

Ich probier's mal (allerdings ohne Fubini, ich sehe auch keine Mehrfachintegration?!):

Die bedingte W'keit [mm] $P(A|\mathcal{C})$ [/mm] hat doch die Eigenschaft
[mm] $\integral_C P(A|\mathcal{C})(\omega) P(\mathrm{d}\omega )=P(A\cap [/mm] C)$
für alle [mm] $C\in\mathcal{C}$ [/mm] (wobei [mm] $\mathcal{C}$ [/mm] eine [mm] $\sigma$-Algebra [/mm] ist).

Für [mm] $C:=\{X_0\in B_0\}$, $A:=\{X_1\in B_1\}$ [/mm] und [mm] $\mathcal{C}:=\sigma(X_0)$ [/mm] ergibt sich:

[mm] $\integral_{\{X_0\in B_0\}} P(\{X_1\in B_1\}|\sigma(X_0))(\omega) P(\mathrm{d}\omega )=P(\{X_0\in B_0\}\cap\{X_1\in B_1\})$ [/mm]

bzw. durch Notationsvereinbarungen:

[mm] $\integral \mathbb{I}_{ \{X_0 \in B_0 \}} P(X_1\in B_1|X_0)(\omega) P(\mathrm{d}\omega )=P(X_0\in B_0,\ X_1\in B_1)$ [/mm]

Aber vielleicht habt Ihr die bedingte W'keit anders definiert, und es folgt nicht auf diese Weise?

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]