matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFormel für form. Potenzreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Formel für form. Potenzreihe
Formel für form. Potenzreihe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für form. Potenzreihe: Verständnis eines Verfahrens
Status: (Frage) beantwortet Status 
Datum: 12:13 So 03.07.2011
Autor: extasic

Aufgabe
Sei [mm] $\sum_{n \geq 0} a_n x^n [/mm] = [mm] \frac{x-2x^3}{4x^4 - 5x^2 + 1}$ [/mm] gegeben. Zu bestimmen ist eine konkrete Formel für [mm] $a_n$. [/mm]

Dabei soll das Folgende verwendet werden:

Für eine Folge $a = [mm] (a_0 [/mm] , [mm] a_1, \ldots)$ [/mm] von komplexen
Zahlen und ein $d$-Tupel [mm] $(\alpha_1, \ldots, \alpha_d) \in \CC^d$ [/mm]
mit [mm] $\alpha_d \neq [/mm] 0$ sind äquivalent.

i) [mm] $$f_a(x) [/mm] = [mm] \displaystyle{\sum_{n \geq 0} a_n x^n} [/mm] = [mm] \frac{P(x)}{Q(x)}$$ [/mm] mit $$Q(x) = 1 + [mm] \alpha_1 [/mm] t + [mm] \cdots [/mm] + [mm] \alpha_dt^d$$ [/mm]
und einem Polynom $P(x)$ vom Grad $< d$.
ii)
[mm] $$a_{n+d} [/mm] + [mm] \alpha_1 a_{n+d-1} [/mm] + [mm] \cdots [/mm] + [mm] \alpha_d a_n [/mm] = 0 [mm] \mbox{~für~} [/mm] n [mm] \geq [/mm] 0.$$
iii) Für [mm]n \geq 0[/mm] gilt [mm] $$a_n [/mm] = [mm] \displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}$$ [/mm] mit $$1 + [mm] \alpha_1 [/mm] x + [mm] \cdots [/mm] + [mm] \alpha_dx^d [/mm] =
[mm] \displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}$$, [/mm] so dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
und [mm]P_i(t)[/mm] ein Polynom vom Grad [mm]< d_i[/mm].

Hallo!

Mir geht es darum das Verfahren zu verstehen, wie aus einer formalen Potenzreihe (wie oben gegeben) eine konkrete Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x) gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.

Wie gehe ich weiter vor? Die Definition oben habe ich in eine Polynomform für Zähler und Nenner gebracht, so dass deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q, oder muss ich noch mehr tun? Wie gewinne ich nun ein konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt, aber was genau das damit zu tun hat weiß ich nicht).

Vielen Dank im Voraus!

        
Bezug
Formel für form. Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 03.07.2011
Autor: MathePower

Hallo extasic,

> Sei [mm]\sum_{n \geq 0} a_n x^n = \frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]
> gegeben. Zu bestimmen ist eine konkrete Formel für [mm]a_n[/mm].
>  
> Dabei soll das Folgende verwendet werden:
>  
> Für eine Folge [mm]a = (a_0 , a_1, \ldots)[/mm] von komplexen
>  Zahlen und ein [mm]d[/mm]-Tupel [mm](\alpha_1, \ldots, \alpha_d) \in \CC^d[/mm]
> mit [mm]\alpha_d \neq 0[/mm] sind äquivalent.
>  
> i) [mm]f_a(x) = \displaystyle{\sum_{n \geq 0} a_n x^n} = \frac{P(x)}{Q(x)}[/mm]
> mit [mm]Q(x) = 1 + \alpha_1 t + \cdots + \alpha_dt^d[/mm]
>  und einem
> Polynom [mm]P(x)[/mm] vom Grad [mm]< d[/mm].
> ii)
>  [mm]a_{n+d} + \alpha_1 a_{n+d-1} + \cdots + \alpha_d a_n = 0 \mbox{~für~} n \geq 0.[/mm]
>  
> iii) Für [mm]n \geq 0[/mm] gilt[mm][/mm][mm] a_n[/mm] = [mm]\displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}[/mm][mm][/mm]
> mit [mm][/mm]1 + [mm]\alpha_1[/mm] x + [mm]\cdots[/mm] + [mm]\alpha_dx^d[/mm] =
>  [mm]\displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}[/mm] [mm][/mm], so
> dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
>  und [mm]P_i(t)[/mm]
> ein Polynom vom Grad [mm]< d_i[/mm].
>  Hallo!
>  
> Mir geht es darum das Verfahren zu verstehen, wie aus einer
> formalen Potenzreihe (wie oben gegeben) eine konkrete
> Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x)
> gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.
>  
> Wie gehe ich weiter vor? Die Definition oben habe ich in
> eine Polynomform für Zähler und Nenner gebracht, so dass
> deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q,
> oder muss ich noch mehr tun? Wie gewinne ich nun ein
> konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt,
> aber was genau das damit zu tun hat weiß ich nicht).


Das ist so gemeint, daß

[mm]\frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]

in Partialbrüche zerlegt werden soll.


>  
> Vielen Dank im Voraus!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 28m 1. meister_quitte
Ind/Vollständige Induktion
Status vor 2h 25m 7. Chris84
DiffGlGew/Loesung DGL
Status vor 8h 04m 3. fred97
UAnaR1/Beweis reelle Zahlen
Status vor 12h 55m 12. fred97
DiffGlGew/Globaler Existenzsatz
Status vor 1d 2h 48m 1. homerq
SVektoren/Raumwinkel errechnen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]