matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikFormel m. Reih. u. Wiederh.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - Formel m. Reih. u. Wiederh.
Formel m. Reih. u. Wiederh. < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel m. Reih. u. Wiederh.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 So 01.07.2007
Autor: Kalex

Hi,
in der Kombinatorik lese ich oft bei Aufgaben mit Reihenfolge aber ohne Wiederholung diese Formel:
$ [mm] n(n-1)\cdots(n-k+1)$ [/mm]

Mein Problem ist, dass ich sie nicht interpretieren kann;
die 3 Punkte verwirren mich.

Normalerweise würde ich einen Zusammenhang suchen zwischen
$ n(n-1)$ und $(n-k+1)$ und den Teil dazwischen weiterführen, aber wo kommt dann das k+ her?

Wie muss ich mit dieser Formel rechnen?

        
Bezug
Formel m. Reih. u. Wiederh.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 So 01.07.2007
Autor: Johanna_S

Huhu,
also, ein kleines Beispie: Du möchtest aus 10 Leuten nacheinander 5 auswählen, Reihenfolge ist wichtig, un keiner wird "zurückgelegt", es kann also niemand zweimal ausgewählt werden, wenn er gewählt wurde, ist er weg. Nun möchtest du die Anzahl der Möglichkeiten, die 5 auszuwählen, berechnen.
Nun, wenn du zum ersten Mal jemanden auswählst, hast du 10 Möglichkeiten, beim zweiten mal nur noch 9, beim dritten Mal sind noch 8 Leute da, die du zur Auswahl hast, beim vierten Mal 7 und beim fünften Mal 6.
Das heißt, die Anzahl der Möglichkeiten ist 10*9*8*7*6
In deinen Variablen: n war 10, k war 5 und die Anzahl der Mögl.
ist n*(n-1)*(n-2)*(n-3)*(n-4). Das (n-k+1) kommt also daher, dass du jedes Mal eine Möglichkeit weniger hast, aber beim ersten Zug noch alle zur Auswahl hast.
Hoffe, das war einigermaßen verständlich ;)
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]