matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFourier Reihe cosh(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Fourier Reihe cosh(x)
Fourier Reihe cosh(x) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Reihe cosh(x): komplexe Fourier Reihe
Status: (Frage) beantwortet Status 
Datum: 15:57 Do 02.03.2006
Autor: Healthy

Aufgabe
Berechnen sie die komplexen Fourierkoeffizienten der 2 [mm] \pi [/mm] periodischen Funktion, die auf dem Intervall [mm] [-\pi; \pi] [/mm] durch

f(x) = cosh(x)   [mm] -\pi \le x<\pi [/mm]

gegeben ist.

Hallo,

ich habe mal eine Frage zu der folgenden Aufgabe:



Heißt ja eigentlich...

[mm] c_{n} =\integral_{- \pi}^{ \pi}{cosh(x) \*e^{inx} dx} [/mm]

was ich in diesem Fall wiederrum so schreiben würde:

[mm] c_{n} =\integral_{- \pi}^{ \pi}{ \bruch{1}{2i*(e^ix+e^-ix)}\*e^{inx} dx} [/mm]

Aber ist das auch richtig??


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fourier Reihe cosh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 02.03.2006
Autor: kruder

Hallo,

ich habe jetzt nicht überprüft ob man es so schreiben kann, wie Du es geschrieben hast. Ich habe einfach mal nach der mir bekannten Regel
gerechnet und es müsste dann ja das selbe rauskommen wenn Du Recht hast. Mich würden die Gedanken interessieren aus welchen Gründen Du es so schreiben wolltest!?


f(t)=cosh(t) ; [mm] t\in [-\pi,\pi]] [/mm]



[mm] c_{k}=\bruch{1}{T}*\integral_{a}^{b}f(t)*e^{-j*k*\omega_{0}*t}dt [/mm]

[mm] \omega_{0}=\bruch{2*\pi}{T}=1 [/mm]

[mm] c_{k}=\bruch{1}{2*\pi}*\integral_{-\pi}^{\pi}cosh(t)*e^{-j*k*t}dt [/mm]

[mm] c_{1}=\bruch{-sinh(\pi)}{2*\pi} [/mm]
[mm] c_{2}=\bruch{sinh(\pi)}{5*\pi} [/mm]
[mm] c_{3}=.... [/mm]
....


Gruß
kruder

Bezug
                
Bezug
Fourier Reihe cosh(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Fr 03.03.2006
Autor: Healthy

>Mich würden die Gedanken interessieren aus
> welchen Gründen Du es so schreiben wolltest!?


Hi,
erstmal vielen Dank für deine Antwort und deine Mühen!
Unser Mathematikprof. hat es gerne, solche Aufgaben mit ein paar Tricks zu lösen.
Der Gedanke ist der, dass ja


[mm] \cosh(x)=\bruch{1}{2i\cdot{}(e^{ix}+e^{-ix})} [/mm]

ist also quasi das gleiche. Wenn man also diesen (oberen) Ausdruck
nimmt und in in das Integral einsetzt, hat man ein Integral welches lediglich aus e-Funtkionen besteht.


$ [mm] c_{n} =\integral_{- \pi}^{ \pi}{ \bruch{1}{2i\cdot{}(e^{ix}+e^{-ix})}*e^{inx} dx} [/mm] $


Bevor also integriert wird hat man so die Möglichkeit das Integral zunächst einmal um einiges zu vereinfachen.
Ich denke mal das ich, die Aufgabe heute nochmal so rechnen werde und mal schaue ob ich auf das gleiche Ergebnis wie komme...

Ich habe das ganze schonmal auf die Art mit [mm] \sin(x), [/mm] bei gleichen Grenzen, gerechnet und finde es recht logisch und einfach...

Bei fragen einfach melden....


Greetz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]