matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFourier Reihenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Fourier Reihenentwicklung
Fourier Reihenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Reihenentwicklung: Lösungstipps
Status: (Frage) beantwortet Status 
Datum: 07:06 Sa 27.01.2007
Autor: bienchen83

Aufgabe
Gegeben sei die [mm] 2\pi [/mm] - periodische Funktion f mit:

f(t)  = [mm] (\pi [/mm] - t)² , für alle t [mm] \in [/mm] [ 0; [mm] 2\pi [/mm] ]

Entwickeln Sie f in einer Fourierreihe.

Hallo!

Kann mir jemand hierfür vielleicht eine Lösung geben oder einen Tipp wie man die Aufgabe lösen kann?

Danke


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fourier Reihenentwicklung: Tipps
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 27.01.2007
Autor: Infinit

Hallo bienchen83,
ein paar Tipps zum Rechnen kann ich Dir schon geben. Bei der in eine Fourierreihe zu entwickelnden Funktion lohnt es sich immer, erst mal nachzuschauen, ob diese Funktion gerade oder ungerade ist. Dies vereinfacht nämlich die weitere Rechnung. Bei einer geraden Funktion kann die Fuourierreihe nur aus Cosinus-Termen bestehen, da auch der Cosinus eine gerade Funktion ist. Bei ungeraden Funktionen besteht die Fourierreihe aus Sinus-Termen, Du errätst schon warum, nämlich weil der Sinus eine ungerade Funktion ist.
In Deinem Fall ist es klar eine gerade Funktion, die Koeffizienten, die zu den Sinustermen gehören sind demzufolge alle Null und man muss nur die Koeffizienten der Cosinusterme ausrechnen.
Diese bekommst Du durch die Berechnung des Integrals
$$ [mm] a_k [/mm] = [mm] \bruch{2}{\pi} \int_0^{\pi} [/mm] f(t) [mm] \cos [/mm] (kt) dt [mm] \, [/mm] . $$
Viel Spaß beim Rechnen,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]