matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFourierreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Fourierreihe
Fourierreihe < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 11.11.2009
Autor: Zweiti

Aufgabe
Bestimmen Sie durch Auswertung der Fourierreihe [mm] f(x)=\bruch{1}{4}\pi+\summe_{k=1}^{\infty}(-\bruch{2}{\pi}\bruch{1}{(2k+1)^2}cos((2k+1)x)-\bruch{(-1)^k}{k}sin(kx)) [/mm] an der Stelle x=0 den Wert der der Reihe: [mm] \summe_{k=0}^{\infty}\bruch{1}{(2k+1)^2}. [/mm]

Hallo,

ich habe folgendes schon ausgerechnet:
f(0)= [mm] \bruch{1}{4}\pi+\summe_{k=1}^{\infty}(-\bruch{2}{\pi}\bruch{1}{(2k+1)^2}). [/mm] Dann habe ich versucht das ganze so umzustellen, dass das Summenzeichen auf einer Seite steht, also:
[mm] \bruch{\pi^2}{8}=\summe_{k=1}^{\infty}\bruch{1}{(2k+1)^2}. [/mm]

Jetzt habe ich ja fast das gewünschte Ergebnis, nur dass meine Summe noch bei 1 anfängt und nicht bei 0.
Wie kann ich das ändern?

Danke
Zweiti

P.S. Hab die Frage in keinem anderen Forum gestellt

        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 11.11.2009
Autor: pelzig

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$\sum_{k=1}^\infty\frac{1}{(2k+1)^2}=\left(\sum_{k=0}^\infty\frac{1}{(2k+1}^2}\right)-1$

Bezug
        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mi 11.11.2009
Autor: fred97

Wie lautet denn f ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]