Fouriertrafo temp Distribution < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:10 Sa 17.01.2015 | Autor: | DerBaum |
Aufgabe | 1. Zeigen Sie [mm] $\delta_\mathbb{Z}:=\sum\limits_{k\in\mathbb{Z}}\delta_k\in \mathcal{S}'(\mathbb{R})$ [/mm]
2. Berechnen Sie [mm] $\mathcal{F}_\mathbb{R}\delta_\mathbb{Z}$. [/mm] |
Guten Tag liebe Forenmitglieder,
ich brächte Rat bei einer Aufgabe, die ich gerade bearbeite, da ich mir nicht sicher bin (vor allem bei der Fouriertransformation) ob das so passt:
1. Linearität von [mm] $\delta_\mathbb{Z}$ [/mm] folgt direkt aus der Linearität jedes Summanden [mm] $\delta_k\in\mathcal{S}'(\mathbb{R})$.
[/mm]
Stetigkeit: Sei [mm] $\varphi\in\mathcal{S}(\mathbb{R})$, [/mm] dann gilt:
[mm] $$|\delta_\mathbb{Z}(\varphi)|=\left|\sum\limits_{k\in\mathbb{Z}}\delta_k(\varphi)\right|\leq\sum\limits_{k\in\mathbb{Z}}\left|\delta_k(\varphi)\right|\leq p_{n+1}(\varphi)\sum\limits_{k\in\mathbb{Z}}\frac{1}{1+|k|^{n+1}}=p_{n+1}(\varphi)\Big(1+2\underbrace{\sum\limits_{k\in\mathbb{N}}\frac{1}{1+k^{n+1}}}_{\star}\Big)<\infty$$
[/mm]
mit [mm] $p_{n+1}(\varphi):=\max\limits_{|a|\leq n+1}\sup\limits_{x\in\mathbb{R}^n}(1+|x|^{n+1})|\partial^\alpha\varphi(x)|$
[/mm]
Zu [mm] $\star$: [/mm] Konvergiert nach Majorantenkriterium mit der allgemeinen harmonischen Reihe [mm] $\sum\limits_{k\in\mathbb{N}}\frac{1}{k^\alpha}$ [/mm] mit [mm] $\alpha=n+1\geq [/mm] 2$ (und damit konvergent) als Majorante.
[mm] $\Rightarrow $\delta_\mathbb{Z}$ [/mm] ist stetig und damit [mm] $\delta_\mathbb{Z}\in\mathcal{S}'(\mathbb{R})$
[/mm]
2. Für [mm] $\varphi\in\mathcal{S}(\mathbb{R})$ [/mm] gilt:
[mm] $$(\mathcal{F}_\mathbb{R}\delta_{\mathbb{Z}})(\varphi)=\delta_{\mathbb{Z}}(\mathcal{F}_\mathbb{R}\varphi)=\sum\limits_{k\in\mathbb{Z}}\delta_{k}(\mathcal{F}_\mathbb{R}\varphi)=\sum\limits_{k\in\mathbb{Z}}(\mathcal{F}_\mathbb{R}\varphi)(k)=\sum\limits_{k\in\mathbb{Z}}\int_\mathbb{R}\varphi(x)\exp(ixk)\mathrm{d}x$$
[/mm]
$$
Das scheint mir aber ein so unschöner Ausdruck zu sein. Habe ich denn etwas übersehen, oder falsch gemacht?
Vielen Dank
Liebe Grüße
DerBaum
|
|
|
|
Was ist [mm] $\delta_k$ [/mm] eigentlich genau?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Di 20.01.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|