matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFouriertransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Fouriertransformation
Fouriertransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation: Frage
Status: (Frage) beantwortet Status 
Datum: 15:23 So 28.08.2005
Autor: Cardmaker

Hallo,

ich lese gerade die Bände "Höhere Mathematik für Ing." und bin im 3. Band bei einem Beweis zur Fouriertransformation hängengeblieben. Vielleicht kann mir ja jemand helfen. Es geht um folgenden Satz:

Für Funktionen f  [mm] \in \partial [/mm] läßt sich f aus g mit Hilfe der Umkehrformel

f(x) =  [mm] \integral_{- \infty}^{ \infty} [/mm] {g(s)*exp(i*x*s) ds}

berechnen. Dabei ist die Menge  [mm] \partial [/mm] folgendermaßen definiert:

[mm] \partial [/mm] = {f [mm] \in C^\infty(R) [/mm] | sup [mm] |x^p [/mm] * [mm] f^q [/mm] (x) | < [mm] \infinity, [/mm] p,q [mm] \in [/mm] N0}

Das [mm] f^q [/mm] heisst q. Ableitung. p und q kommen aus den nat. Zahlen mit 0. Die Menge beschreibt alle komplexwertigen Fkt. die beliebig oft stetig diff'bar sind und mitsamt allen ihren Ableitungen stärker als jede Potenz von 1/|x| für [mm] |x|->\infinity [/mm] gegen 0 konvergieren.

Jetzt soll an einer Stelle im Beweis folgendes gezeigt werden:

[mm] s^p [/mm] * [mm] g^q [/mm] (s) ist beschränkt. Es wurde nun gezeigt:

[mm] s^p [/mm] * [mm] g^q [/mm] (s) = [mm] (-i)^p [/mm] * [mm] \integral_{- \infty}^{ \infty} [/mm] {exp(-i*x*s) [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] dt}

Jetzt steht drunter: "Da mit f auch [mm] (-it)^q [/mm] f und [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] zu  [mm] \partial [/mm] gehören, folgt hieraus die Beschränktheit von [mm] s^p [/mm] * [mm] g^q [/mm] (s)."

Das ist genau die Stelle, die ich nicht verstehe. Ich sehe ein, dass [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] zu  [mm] \partial [/mm] gehört, aber warum ist dann das gesamte Integral beschränkt? Vielleicht kann mir jemand helfen. Ich überlege nun schon eine ganze Weile, komme aber nicht so recht weiter.

Auf jeden Fall vielen Dank schonmal

Viele Grüße
Marco


        
Bezug
Fouriertransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mo 29.08.2005
Autor: choosy

Schau einfach mal scharf hin: ist
[mm](d/dt)^p [(-it)^q \cdot f(t)] \in \partial[/mm],
so ist
[mm] $\sup \big\|\left(\frac{d}{dt}\right)^p [(-it)^q \cdot [/mm] f(t)] [mm] \big\| [/mm] =:c < [mm] \infty$ [/mm]

(auch wenn [mm] $(s^p*g^q)(s)$ [/mm] keine glückliche bezeichnung ist, behalte ich sie mal bei)

also ist
[mm] $|(s^p*g^q)(s) [/mm] |=  [mm] \big|(-i)^p\cdot \int_{-\infty}^{\infty} [/mm] exp(-i*x*s)  [mm] \cdot \left(\frac{d}{dt}\right)^p [(-it)^q \cdot [/mm] f(t)]dt  [mm] \big| \leq |(-i)^p [/mm] | [mm] \cdot\int_{-\infty}^{\infty}| [/mm] exp(-i*x*s)  [mm] \cdot [/mm] c |  [mm] \;dt [/mm] = $ konstant,
also beschränkt

Bezug
                
Bezug
Fouriertransformation: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 05.11.2005
Autor: Cardmaker

Hallo,

vielen vielen Dank. Jetzt hab ichs verstanden. War eigentlich gar nicht mal so schwer, aber wenn man so einen langen Beweis ließt grübelt man dann auch schon mal an den "einfachen" Sachen. Hätte es aber wohl alleine nicht hingekriegt.

Vielen Dank nochmals

Liebe Grüße
Marco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]