matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikFouriertransformation (Deltaf)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Elektrotechnik" - Fouriertransformation (Deltaf)
Fouriertransformation (Deltaf) < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation (Deltaf): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 30.10.2010
Autor: qsxqsx

Hallo Leute,

Ich soll die Fouriertransformierte des folgenden Signals berechnen, komme aber auf was ganz anderes:
f(t) = [mm] \summe_{k=-\infty}^{\infty} e^{-|t-2k|} [/mm]


also ich habe das so gemacht
F(s) = [mm] \integral_{-\infty}^{\infty}{ (\summe_{k=-\infty}^{\infty} e^{-|t-2k|} )e^{-jwt} dt } [/mm]

Dann unterscheiden ob t-2k grösser oder kleiner Null ist. Da t und 2k jeweils durchlaufen werden, ist das abhängig von dem k bzw. t. Ich vertausche zuerst Integral und Summenzeichen, dann integriere ich nach t von [2k bis [mm] \infty] [/mm] und andrerseits mit anderem vorzeichen von [mm] [-\infty [/mm] bis 2k].

= [mm] \summe_{k=-\infty}^{\infty} e^{2k}*\bruch{e^{-t(1+jw)}}{-(1+jw)} [/mm] mit Grenzen [2k bis [mm] \infty] [/mm]
+
[mm] \summe_{k=-\infty}^{\infty} e^{-2k}*\bruch{e^{-t(-1+jw)}}{-(-1+jw)} [/mm]
mit Grenzen [mm] [-\infty [/mm] bis 2k]
= [mm] \summe_{k=-\infty}^{\infty} \bruch{2*e^{-2kjw} }{w^{2} + 1} [/mm]
(EDIT: Natürlich hier die Summe über alle k, was ich vergessen habe...)


Die Lösung sagt aber
F(s) = [mm] \bruch{2*\pi}{w^{2} + 1}*\summe_{k = -\infty}^{\infty}[\delta(w-k*\pi)] [/mm]

Danke&Gruss

Qsxqsx






        
Bezug
Fouriertransformation (Deltaf): Normierung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Sa 30.10.2010
Autor: Infinit

Hallo qsxqsx,
ist hier schon eine Normierung vorgenommen worden für das Zeitsignal? Irgendwas stimmt hier nicht, der Exponent der e-Funktion ist eine Zeitfunktion, sollte aber dimensionslos sein und es wird was nicht Dimensionsbehaftetes, nämlich das k, davon subtrahiert.
Viele Grüße,
Infinit



Bezug
                
Bezug
Fouriertransformation (Deltaf): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Sa 30.10.2010
Autor: qsxqsx

Hallo Infinit,

Nö, es steht nichts weiter...habs nochmals durchgecheckt, ist richtig abgeschrieben.
Es geht ja mehr um die Zahlen bzw. das Theoretische, nicht?

Gruss

Bezug
        
Bezug
Fouriertransformation (Deltaf): Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Sa 30.10.2010
Autor: mathfunnel

Hallo Qsxqsx,

versuche es mal mit der Faltung:

$f(t)= [mm] \summe_{k=-\infty}^{\infty} e^{-|t-2k|} [/mm] = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-|t|}\*\delta(t-2k) [/mm] =  [mm] e^{-|t|}\*\sum\limits_{k=-\infty}^{\infty} \delta(t-2k)$ [/mm]

Kennst Du den Dirac-Kamm?
Ich denke, dass Dir der Hinweis reicht, oder?

LG mathfunnel


Bezug
                
Bezug
Fouriertransformation (Deltaf): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 So 31.10.2010
Autor: qsxqsx

Hm ja habe jetzt gerade gesehen das in meiner Theorie der Dirac Kamm kommt und mich reingelesen. Trotzdem: Ist den mein Lösungsweg bzw. mein Ergebnis jetzt auch richtig? Ich bin doch richtig vorgegangen?

Dann müsste aber [mm] \pi*\delta(w [/mm] - [mm] k*\pi) [/mm] = [mm] e^{-jw2k} [/mm] sein??! Seh ich irgendwie nicht...

Gruss

Bezug
                        
Bezug
Fouriertransformation (Deltaf): Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 So 31.10.2010
Autor: mathfunnel

Hallo Qsxqsx,

> Hm ja habe jetzt gerade gesehen das in meiner Theorie der Dirac Kamm kommt und mich reingelesen. Trotzdem: Ist den mein Lösungsweg bzw. mein Ergebnis jetzt auch richtig? Ich bin doch richtig vorgegangen?

Selbstverständlich! Ich dachte nur, dass Du die Gleichheit der Ergebnisse erkennst, wenn ich
den Dirac-Kamm erwähne.

Der Zusammenhang mit Deiner Lösung ist folgender:

[mm] ($\mathcal [/mm] {F}$ für Fourier-Transformation und [mm] $D_p [/mm] := [mm] \sum\limits_{k=-\infty}^{\infty} \delta(t-pk)$): [/mm]

[mm] $\mathcal{F}(D_2) [/mm] = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-jw2k} [/mm] = [mm] \frac{1}{2}D_\frac{1}{2}$ [/mm] (Die Reihe macht nur Sinn wenn man sie als Reihe von Distributionen auffasst.)

$f(t) = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-|t|}\*\delta(t-2k) [/mm] =  [mm] e^{-|t|}\*D_2$ [/mm]

Mit dem Faltungssatz folgt:

[mm] $\mathcal [/mm] {F}(f) = [mm] \mathcal {F}(e^{-|t|})\mathcal{F}(D_2) [/mm] = [mm] (\frac{2}{1+\omega^2}) (\frac{1}{2}D_\frac{1}{2})$ [/mm]


Mit  [mm] $D_\frac{1}{2}(\omega) [/mm] = [mm] 2\pi\sum\limits_{k=-\infty}^{\infty} \delta(\omega-\pi [/mm] k) $

ergibt sich insgesamt

[mm] $\mathcal [/mm] {F}(f) = [mm] \frac{2\pi}{1+\omega^2} \sum\limits_{k=-\infty}^{\infty} \delta(\omega-k\pi)$ [/mm]

LG mathfunnel


Bezug
                                
Bezug
Fouriertransformation (Deltaf): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 So 31.10.2010
Autor: qsxqsx

Sehr nett, danke.

Ich wollt irgendwie nicht sehen das es das selbe ist weil ja die Deltafunktion an der Stelle wo sie einen Wert hat theoretisch unendlich ist und [mm] e^{j*a} [/mm] vom Betrag 1 ist und irgendwie hab ich dann hald kurzerhand gedacht das kann nicht sein...

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]