matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraFp ist Körper <=> p ist prim
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Fp ist Körper <=> p ist prim
Fp ist Körper <=> p ist prim < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fp ist Körper <=> p ist prim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 06.11.2007
Autor: Damn88

Aufgabe
Zeigen Sie: Die Menge [mm] \IF_{p} [/mm] ist ein Körper genau dann, wenn p eine Primzahl ist. Hierbei verzichten wir darauf, dass Sie das Assoziativgesetz und das Distributivgesetz nachweisen müssen, falls p prim ist.

Aus der Vorlesung: " Betrachte [mm] \IZ, [/mm] eine Zahl n >= 2
Def.: Zwei Zahlen a,b [mm] \in \IZ [/mm] heißen äquivalent, wenn a-b ein ganzzahliges Vielfaches von n ist.
Setze [mm] \IF_{n} [/mm] = [mm] \IZ_{/~} [/mm]
Bemerkung: [mm] \IF_{n} [/mm] ist im Allg, kein Körper (mit Beispiel)
Fakt: [mm] \IF_{n} [/mm] ist Körper [mm] \gdw [/mm] n ist prim"

Beweis:
[mm] "\Rightarrow" \IF_{p} [/mm] ist Körper [mm] \Rightarrow [/mm] p ist prim (durch Widerspruch)
Sei p keine Primzahl, dann ist p=m*l mit 1<m,l<p für geeignete m,l [mm] \in \IZ. [/mm] Wegen p>m,l ist [m],[l] [mm] \not=[0], [/mm] aber [0]=[p]=[m*l]
Für einen Körper gilt jedoch: a*b = 0 [mm] \Rightarrow [/mm] a=0 oder b=0
somit ist [mm] \IF_{p} [/mm] kein Körper, wenn p keine Primzahl ist.

geht das als Widerspruchsbeweis??

[mm] "\Leftarrow" [/mm] p ist prim [mm] \Leftarrow \IF_{p} [/mm] ist Körper
Ist p eine Primzahl und [m]*[l]=[0]=[p] mit [m],[l] [mm] \in \IF_{p}, [/mm] so folgt aus der Eindeutigkeit der Primfaktorzerlegung, dass entweder [m]=[0] oder [l]=[0] ist.

Muss ich jetzt noch beweisen, dass die Körperxiome gelten?

[a],[b],[c] [mm] \in \IF_{p} [/mm]
(A1,Assoz.) muss ich laut Aufgabenstellung nicht zeigen(warum auch immer)
[mm] (A2,neutrales)[0]\in \IF_{p} [/mm] [a]+[0]=[a+0]=[a]=[0+a]=[0]+[a]
(A3, inverses) [a] +[-a] =[a+(-a)]=[0] =[-a+a] =[-a]+[a]
(A4,Kommutativ) [a]+[b]=[a+b]=[b+a]=[b]+[a]
M1,Assoz.) mus ich nicht zeigen...:/
(M2,neutrales) [1] [mm] \in \IF_{p} [/mm] [a]*[1]=[a*1]=[a]=[1*a]=[1]*[a]
(M3, inveres) hier habe ich keine Ahnung..kann mir einer weiterhelfen?
(M4,kommutativ) [a]*[b]=[a*b]=[b*a]=[b]*[a]
(Distributivgesetz) muss ich auch nicht zeigen
Ist der Beweis so in Ordnung?
Danke für eure Hilfe

        
Bezug
Fp ist Körper <=> p ist prim: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Di 06.11.2007
Autor: leduart

Hallo
Der erste Teil ist richtig, du solltest dazusagen, dass es damit kein * Inverses zu jedem [m] gibt.
Da alle F sowieso additive Gruppen sind musst du da nix mehr beweisen.
Das einzige was du zeigen musst ist dass es zu jedem El. ein mult. Inverses gibt.
Dazu sollte man wissen : wenn ggT(a,b)=c
folgt es gibt [mm] r,s\in\IZ [/mm] mit c=r*a+s*b
und das auf c=1 anwenden.
Gruss leduart

Bezug
                
Bezug
Fp ist Körper <=> p ist prim: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:22 Di 06.11.2007
Autor: Damn88

Danke danke :D

Das was du meinst ist dieser "erweiterter euklidischer Algorithmus", oder?!
Den hatten wir noch nie in der vorlesung, der Prof hats noch nicht mal erwähnt. Ich habe das nur im Internet gefunden. Gibt es wirklich keine andere Möglichkeit, dies zu zeigen?


Bezug
                        
Bezug
Fp ist Körper <=> p ist prim: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Di 06.11.2007
Autor: leduart

Hallo
ich habs nicht durchübelegt, aber wahrschienlich geht es auch damit, alle Potenzen von m zu nehmen, davon gibts höchstens p-1, alle [mm] \ne [/mm] 0  daraus dann auf das Inverse schliessen.
Gruss leduart

Bezug
                        
Bezug
Fp ist Körper <=> p ist prim: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:47 Do 08.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]