matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteFrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Frage
Frage < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage: Eigenwert einer Matrix
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:01 So 03.07.2005
Autor: sternchen19.8

Hi! Ich habe eine Matrix A [mm] \in M_K(n,n) [/mm] gegeben. Ich muss zeigen, dass  [mm] \lambda [/mm] ganau dann ein Eigenwert von A ist, wenn  [mm] \mu_A [/mm] ( [mm] \lambda) [/mm] = 0 ist. Ist das nicht eigentlich die Definition für die Normalen Eigenwerte. Oder ist das ein spezieller Eigenwert? Weiß nicht genau, wie ich dass zeigen soll. Statt  [mm] \mu [/mm] haben wir immer gesagt dass  [mm] \lambda [/mm] ein Eigenwert ist, wenn das charakteristische Polynom Null ist. Ist das jetzt so ähnlich?

        
Bezug
Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 So 03.07.2005
Autor: mathedman


> Hi! Ich habe eine Matrix A [mm]\in M_K(n,n)[/mm] gegeben. Ich muss
> zeigen, dass  [mm]\lambda[/mm] ganau dann ein Eigenwert von A ist,
> wenn  [mm]\mu_A[/mm] ( [mm]\lambda)[/mm] = 0 ist.

Was ist denn [mm]\mu_A[/mm]?
Das charakteristische Polynom von [mm]A[/mm]?
Das Minimalpolynom?


Bezug
                
Bezug
Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 So 03.07.2005
Autor: sternchen19.8

Das charakteristische Polynom haben wir immer anders benannt. Ich weiß auch nicht, was [mm] \mu [/mm] ist, da es nicht in der Aufgabe steht und wir es nie wirklich definiert haben. Was könnte es denn sein, damit die Aufgabe einen Sinn machen würde?

Bezug
        
Bezug
Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 03.07.2005
Autor: Nam

Das charakteristische Polynom würde schon Sinn machen. In der Regel wird der Eigenwert ja auch nicht über das charakteristische Polynom definiert, sondern so:
[mm]\lambda[/mm] Eigenwert von A [mm]\gdw \;\;\; \exists \;\; x \not= 0: \;\;\; Ax = \lambda x[/mm] (siehe []http://de.wikipedia.org/wiki/Eigenwertproblem)

Dann würde gelten:
[mm]\lambda[/mm] Eigenwert von A
[mm]\gdw \;\;\; \exists \;\; x \not= 0: \;\;\; Ax = \lambda x[/mm]
[mm]\gdw \;\;\; \exists \;\; x \not= 0: \;\;\; (A-\lambda)x = 0[/mm]
[mm]\gdw \;\;\; \exists \;\; x \not= 0: \;\;\; x \in Kern(A-\lambda)[/mm]
[mm]\gdw \;\;\; A-\lambda[/mm]  ist nicht injektiv (hat nicht vollen Rang)
[mm]\gdw \;\;\; Rang(A-\lambda) < n[/mm]
[mm]\gdw \;\;\; 0 = det(A-\lambda) = \mu_A(\lambda)[/mm]

Aber am besten würde ich mal den Übungsleiter oder denjenigen, der die Aufgabenblätter konzipiert fragen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]