matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFragen bzgl. Kurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Fragen bzgl. Kurven
Fragen bzgl. Kurven < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen bzgl. Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 27.07.2008
Autor: Psych0dad

Aufgabe 1
Gesucht ist eine Kurve f(t), welche in der Ebene einen Kreis um den Ursprung mit Radius r beschreibt.

1. Wie lautet f(t)?
2. Berechnen Sie die Geschwindigkeit f'(t) der Kurve und den Betrag der Geschwindigkeit

Aufgabe 2
Es ist folgende Kurve gegeben:  [mm] \begin{pmatrix} t*cos(t) \\ t*sin(t) \end{pmatrix} [/mm]

1. Wie lautet f'(t)
2. Geschwindigkeit und Betrag der Geschwindigkeit berechnen

Aufgabe 3
Folgende Kurve ist gegeben:  [mm] \begin{pmatrix} -ln(a/2) \\ a^2 \end{pmatrix} [/mm]

Halli Hallo :)

ich hab ein paar Fragen bzgl. Kurven etc. an Euch.

Zur 1. Aufgabe:

f(t) müsste doch hier: [mm] \begin{pmatrix} r*sin(t) \\ r*cos(t) \end{pmatrix}sein [/mm] oder?

Für den Betrag bekomme ich [mm] \wurzel{(r*sin t)^2+(r*cos t)^2 +1} [/mm] raus, als Ergebnis weis ich das [mm] \wurzel{(r^2+1)} [/mm] rauskommt aber wie komm ich darauf?

Zur 2. Aufgabe:

f'(t) =  [mm] \begin{pmatrix} cos t - t \cdot sin t \\ sin t + t \cdot cos t \end{pmatrix} [/mm]

Für den Betrag: [mm] (\cos [/mm] t - t  [mm] \cdot \sin t)^2+(\sin [/mm] t + t  [mm] \cdot \cos t)^2 [/mm] = [mm] \cos^ [/mm] 2t - 2t [mm] \cdot \sin [/mm] t [mm] *\cos [/mm] t + [mm] t^2 \cdot \sin^2t [/mm] + [mm] \sin^2t [/mm] + 2t  [mm] \cdot \sin [/mm] t  [mm] \cdot \cos [/mm] t + [mm] t^2 \cdot \cos [/mm] t

ich weiß das [mm] \wurzel{1+t^2} [/mm] rauskommen muss, aber ich hab absolut keine Ahnung wie ich da draufkommen soll? Wär echt froh wenn das jemand vorrechnen kann, damit ich das nachverfolgen kann.

Zur 3. Aufgabe

Hier will ich egtl. nur wissen, ob mein Ansatz richtig ist: f'(a) = [mm] \begin{pmatrix} -1/a \\ 2a \end{pmatrix} [/mm]
Betrag = [mm] \bruch{1}{a^2}\wurzel{1+a^4} [/mm]

Viele Grüße

        
Bezug
Fragen bzgl. Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 27.07.2008
Autor: MathePower

Hallo Psych0dad,

> Gesucht ist eine Kurve f(t), welche in der Ebene einen
> Kreis um den Ursprung mit Radius r beschreibt.
>  
> 1. Wie lautet f(t)?
>  2. Berechnen Sie die Geschwindigkeit f'(t) der Kurve und
> den Betrag der Geschwindigkeit
>  Es ist folgende Kurve gegeben:  [mm]\begin{pmatrix} t*cos(t) \\ t*sin(t) \end{pmatrix}[/mm]
>  
> 1. Wie lautet f'(t)
>  2. Geschwindigkeit und Betrag der Geschwindigkeit
> berechnen
>  Folgende Kurve ist gegeben:  [mm]\begin{pmatrix} -ln(a/2) \\ a^2 \end{pmatrix}[/mm]
>  
> Halli Hallo :)
>  
> ich hab ein paar Fragen bzgl. Kurven etc. an Euch.
>  
> Zur 1. Aufgabe:
>  
> f(t) müsste doch hier: [mm]\begin{pmatrix} r*sin(t) \\ r*cos(t) \end{pmatrix}sein[/mm]
> oder?


Ja, bei einem Kreis mit Radius r um den Ursprung. [ok]


>  
> Für den Betrag bekomme ich [mm]\wurzel{(r*sin t)^2+(r*cos t)^2 +1}[/mm]
> raus, als Ergebnis weis ich das [mm]\wurzel{(r^2+1)}[/mm] rauskommt
> aber wie komm ich darauf?


Schau Dir hierzu einer dieser []Additionstheoreme an.


>  
> Zur 2. Aufgabe:
>  
> f'(t) =  [mm]\begin{pmatrix} cos t - t \cdot sin t \\ sin t + t \cdot cos t \end{pmatrix}[/mm]
>  
> Für den Betrag: [mm](\cos[/mm] t - t  [mm]\cdot \sin t)^2+(\sin[/mm] t + t  
> [mm]\cdot \cos t)^2[/mm] = [mm]\cos^[/mm] 2t - 2t [mm]\cdot \sin[/mm] t [mm]*\cos[/mm] t + [mm]t^2 \cdot \sin^2t[/mm]
> + [mm]\sin^2t[/mm] + 2t  [mm]\cdot \sin[/mm] t  [mm]\cdot \cos[/mm] t + [mm]t^2 \cdot \cos[/mm]
> t
>  
> ich weiß das [mm]\wurzel{1+t^2}[/mm] rauskommen muss, aber ich hab
> absolut keine Ahnung wie ich da draufkommen soll? Wär echt
> froh wenn das jemand vorrechnen kann, damit ich das
> nachverfolgen kann.


Siehe den[]  Link unter Aufgabe 1.


>  
> Zur 3. Aufgabe
>  
> Hier will ich egtl. nur wissen, ob mein Ansatz richtig ist:
> f'(a) = [mm]\begin{pmatrix} -1/a \\ 2a \end{pmatrix}[/mm]


Ansatz ist ok.


>  Betrag =
> [mm]\bruch{1}{a^2}\wurzel{1+a^4}[/mm]


Das musst Du nochmal nachrechnen.


>  
> Viele Grüße  


Gruß
MathePower

Bezug
        
Bezug
Fragen bzgl. Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 So 27.07.2008
Autor: Psych0dad

Sehe grad das ich bei der 1. Aufgabe eine falsche Angabe gemacht hab, der Betrag müsste hier r sein.

Also bei der 2. Aufgabe komm ich noch nicht ganz mit.

[mm] \cos^2t [/mm] -2t [mm] \sin [/mm] t [mm] \cos [/mm] t + [mm] t^2 \sin^2t +\sin^2t [/mm] +2t [mm] \sin [/mm] t [mm] \cos [/mm] t + [mm] t^2 \cos^2t [/mm]

also -2t [mm] \sin [/mm] t [mm] \cos [/mm] t und 2t [mm] \sin [/mm] t [mm] \cos [/mm] t löst sich schonmal auf oder?

Bleibt: [mm] \cos^2t [/mm] + [mm] \sin^2t +t^2 \sin^2t [/mm] + [mm] t^2 \cos^2t [/mm]

[mm] \sin^2t [/mm] + [mm] \cos^2t [/mm] ergibt ja 1 oder? [mm] 1+t^2 \sin^2t [/mm] + [mm] t^2 \cos^2t [/mm]

Wenn ich jetzt noch verstehen würde wie man auf das [mm] t^2 [/mm] kommt...

Bei der 3. Aufgabe hab ich 2 verschiedene Aufgaben verwurschtelt sorry :D also es müsste glaub ich [mm] \wurzel{\bruch{1}{a^2}+4a^2} [/mm] sein

Lässt sich das noch umbauen / vereinfachen?

Bezug
                
Bezug
Fragen bzgl. Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 So 27.07.2008
Autor: MathePower

Hallo Psych0dad,


> Sehe grad das ich bei der 1. Aufgabe eine falsche Angabe
> gemacht hab, der Betrag müsste hier r sein.


Jo.


>  
> Also bei der 2. Aufgabe komm ich noch nicht ganz mit.
>  
> [mm]\cos^2t[/mm] -2t [mm]\sin[/mm] t [mm]\cos[/mm] t + [mm]t^2 \sin^2t +\sin^2t[/mm] +2t [mm]\sin[/mm] t
> [mm]\cos[/mm] t + [mm]t^2 \cos^2t[/mm]
>  
> also -2t [mm]\sin[/mm] t [mm]\cos[/mm] t und 2t [mm]\sin[/mm] t [mm]\cos[/mm] t löst sich
> schonmal auf oder?


Ja.


>  
> Bleibt: [mm]\cos^2t[/mm] + [mm]\sin^2t +t^2 \sin^2t[/mm] + [mm]t^2 \cos^2t[/mm]
>  
> [mm]\sin^2t[/mm] + [mm]\cos^2t[/mm] ergibt ja 1 oder? [mm]1+t^2 \sin^2t[/mm] + [mm]t^2 \cos^2t[/mm]
>  
> Wenn ich jetzt noch verstehen würde wie man auf das [mm]t^2[/mm]
> kommt...

Das beruht auch auf [mm]\sin^{2}\left(t\right)+\cos^{2}\left(t\right)=1[/mm]

[mm]1+t^2 \sin^{2}\left(t\right) + t^2 \cos^{2}\left(t\right)=1+t^2 *\underbrace{\left(\sin^{2}\left(t\right) + \cos^{2}\left(t\right)\right)}_{=1}=1+t^{2}[/mm]


>
> Bei der 3. Aufgabe hab ich 2 verschiedene Aufgaben
> verwurschtelt sorry :D also es müsste glaub ich
> [mm]\wurzel{\bruch{1}{a^2}+4a^2}[/mm] sein
>
> Lässt sich das noch umbauen / vereinfachen?  

Klar.

Multipliziere den ganzen Ausdruck mit [mm]\bruch{a}{a}[/mm].

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]