matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFragen zur Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Fragen zur Algebra
Fragen zur Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen zur Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Fr 01.01.2021
Autor: ireallydunnoanything

Hallo !

Ich höre dieses Semester Algebra (Bachelor) und hätte einige grundlegende Fragen.

1. Was versteht man unter der Konjugation und unter Konjugationsklassen ?
2. Was hat es mit Automorphismen und Automorphismengruppen auf sich ?

Über eine (wenn es geht anschauliche) Erklärung wäre ich sehr dankbar.

Grüße

Alex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fragen zur Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 04:37 Sa 02.01.2021
Autor: Josef


>  
> 1. Was versteht man unter der Konjugation und unter
> Konjugationsklassen ?



Konjunktion

Unter der Aussagenverbindung A [mm] \wedge [/mm] B (lies: A und B) versteht man die zusammengesetzte Aussage, die genau dann wahr ist, wenn A und B zugleich wahr sind. A [mm] \wedge [/mm] B nennt man Konjunktion von A und B.

Beispiel:

A: Das Mädchen ist hübsch;
B: Das Mädchen kann gut Tennis spielen.

Die zusammengesetzte Aussage A [mm] \wedge [/mm] B:

"Das Mädchen ist hübsch und kann gut Tennis spielen!" ist nur dann wahr, wenn beide Teilaussagen zutreffen.





Aus Wikipedia, der freien Enzyklopädie Konjugationsklasse

"In der Mathematik , vor allem Gruppentheorie , zwei Elemente ein und b einer Gruppe sind Konjugat , wenn es ein Element ist , g in der Gruppe , so daß b = g -1 ag . Dies ist eine Äquivalenzrelation , deren Äquivalenzklassen werden genannt Konjugiertenklassen .

Mitglieder derselben Konjugationsklasse können nicht nur anhand der Gruppenstruktur unterschieden werden und haben daher viele Eigenschaften gemeinsam. Die Untersuchung von Konjugationsklassen nicht-abelscher Gruppen ist für die Untersuchung ihrer Struktur von grundlegender Bedeutung. Für eine abelsche Gruppe ist jede Konjugationsklasse eine Menge, die ein Element enthält ( Singleton-Menge ). Konjugationsklasse" - https://de.qaz.wiki/wiki/Conjugacy_class



Viele Grüße
Josef

Bezug
        
Bezug
Fragen zur Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Sa 02.01.2021
Autor: statler

Guten Tag!

> 1. Was versteht man unter der Konjugation und unter
> Konjugationsklassen ?

In diesem Zusammenhang ist die Konjugation eine Abbildung [mm] f_{a} [/mm] von G [mm] \to [/mm] G, die gegeben ist durch x [mm] \mapsto axa^{-1} [/mm] (oder manchmal auch [mm] a^{-1}xa). [/mm] Man kann dann relativ leicht zeigen, daß es ein Isomorphismus ist, der in dieser Situation Automorphismus heißt, weil der Definitionsbereich gleich dem Wertebereich ist. Die Abbildung oder besser G 'geht auf sich selbst'.

2 Elemente [mm] g_{1} [/mm] und [mm] g_{2} [/mm] von G heißen konjugiert, wenn es ein a in G gibt mit [mm] f_{a}(g_{1}) [/mm] = [mm] g_{2}. [/mm] Dieses 'konjugiert' ist eine Äquivalenzrelation und liefert eine Partition von G in Äquivalenzklassen, die dann Konjugationsklassen heißen.

>  2. Was hat es mit Automorphismen und Automorphismengruppen
> auf sich ?

Es gibt 2 Sorten von Automorphismen, die inneren - das sind die von Teil 1 - und die äußeren, das sind die anderen. Bei einer abelschen Gruppe gibt es naturgemäß nur die Identität als inneren Automorphismus, das ist nicht so spannend. Die Kleinsche Vierergruppe V4 ist abelsch, hat aber eine ganze Menge Automorphismen. Alle Automorphismen einer Gruppe G bilden selbst eine Gruppe Aut(G) mit den inneren Automorphismen als Untergruppe.

Ich hoffe, ich habe das soweit erstmal geklärt.
Gruß Dieter

Bezug
                
Bezug
Fragen zur Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Sa 02.01.2021
Autor: ireallydunnoanything

Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]