matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeFreie Moduln u. Ideale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Freie Moduln u. Ideale
Freie Moduln u. Ideale < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freie Moduln u. Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:30 Mi 20.05.2009
Autor: kevin-m.

Aufgabe
Es sei R ein Ring und $a [mm] \not= [/mm] (0)$ ein Ideal in $R$. Zeigen Sie: $a$ ist genau dann ein freier $R$-Modul, wenn $a$ ein Hauptideal ist, welches von einem Nichtnullteiler erzeugt wird.

Hallo,

wenn ich zuerst voraussetze, dass $a$ ein Hauptideal ist (welches nicht von einem Nullteiler erzeugt wird), dann gibt es ja ein Element $x [mm] \in [/mm] R$ ($x$ ist kein Nullteiler), welches $a$ erzeugt; also [mm] $a=(x)=\{ra | r \in R \}$ [/mm] - Somit wäre ja $x$ schon eine Basis von $a$ und folglich ist das Ideal $a$ ein freier $R$-Modul.
Und die andere Richtung: Ich setze voraus, dass $a$ ein freier $R$-Modul ist. Das heißt, dass $a$ eine Basis besitzt. Die Basis muss einelementig sein (ich nenne es einfach wieder $x$), weil zwei beliebige Elemente des Ideals linear abhängig sind. $x$ muss so gewählt werden, dass es kein Nullteiler ist, denn dann gäbe es ein $y$ mit der Eigenschaft $xy=0, x [mm] \not [/mm] = 0, y [mm] \not= [/mm] 0$. Also ist $a$ ein Hauptideal (da nur von einem einzigen Element aus dem Ring $R$ erzeugt).

Ich bin mir noch ziehmlich unsicher, ob das so in Ordnung ist. Es wäre schön, wenn es jemand überprüfen könnte.

Danke und viele Grüße,
Kevin




        
Bezug
Freie Moduln u. Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 03:39 Mi 20.05.2009
Autor: felixf

Moin Kevin!

> Es sei R ein Ring und [mm]a \not= (0)[/mm] ein Ideal in [mm]R[/mm]. Zeigen
> Sie: [mm]a[/mm] ist genau dann ein freier [mm]R[/mm]-Modul, wenn [mm]a[/mm] ein
> Hauptideal ist, welches von einem Nichtnullteiler erzeugt
> wird.
>
>  Hallo,
>  
> wenn ich zuerst voraussetze, dass [mm]a[/mm] ein Hauptideal ist
> (welches nicht von einem Nullteiler erzeugt wird), dann
> gibt es ja ein Element [mm]x \in R[/mm] ([mm]x[/mm] ist kein Nullteiler),
> welches [mm]a[/mm] erzeugt; also [mm]a=(x)=\{ra | r \in R \}[/mm] - Somit
> wäre ja [mm]x[/mm] schon eine Basis von [mm]a[/mm] und folglich ist das Ideal
> [mm]a[/mm] ein freier [mm]R[/mm]-Modul.

Nun, das $x$ eine Basis ist folgt daraus, dass $x$ ein Nichtnullteiler ist. Das solltest du noch besser erwaehnen.

>  Und die andere Richtung: Ich setze voraus, dass [mm]a[/mm] ein
> freier [mm]R[/mm]-Modul ist. Das heißt, dass [mm]a[/mm] eine Basis besitzt.
> Die Basis muss einelementig sein (ich nenne es einfach
> wieder [mm]x[/mm]), weil zwei beliebige Elemente des Ideals linear
> abhängig sind.

Genau.

> [mm]x[/mm] muss so gewählt werden, dass es kein
> Nullteiler ist, denn dann gäbe es ein [mm]y[/mm] mit der Eigenschaft
> [mm]xy=0, x \not = 0, y \not= 0[/mm]. Also ist [mm]a[/mm] ein Hauptideal (da
> nur von einem einzigen Element aus dem Ring [mm]R[/mm] erzeugt).

Genau.

> Ich bin mir noch ziehmlich unsicher, ob das so in Ordnung
> ist. Es wäre schön, wenn es jemand überprüfen könnte.

Es ist in Ordung, bis auf die eine Sache oben.

LG Felix


Bezug
                
Bezug
Freie Moduln u. Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 Mi 20.05.2009
Autor: kevin-m.

Hallo Felix,

vielen Dank, dass du meinen Beweis überprüft hast :-)

Ciao,
Kevin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]