matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikFreier Fall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Freier Fall
Freier Fall < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freier Fall: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:39 Do 02.12.2004
Autor: bourne

Ein Körper wird senkrecht nach oben geworfen vo=14m/s.
Wann erreicht er eine Höhe von 5m [mm] ?(g=9,81m/s^2)? [/mm]

Klar ist das für die Zeit 2 Werte rauskommen müssen!

Ich habe folgende Formel aufgestellt:

[mm] h=(vo*t)-(0,5*g*t^2) [/mm]

Das ganze müsst ich nur noch nach t umstellen, das erscheint mir jedoch nicht so einfach!

Ich bin um jede Hilfe dankbar.
Danke, im Voraus.

        
Bezug
Freier Fall: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Fr 03.12.2004
Autor: FriedrichLaher

Hallo, bourne

habt Ihr noch nicht quadratische
Gleichungen behandelt?

$h = [mm] v_0*t [/mm] - [mm] \frac{g}{2}t^2$ [/mm]

[mm] $\frac{g}{2}t^2 [/mm] - [mm] v_0*t [/mm] - h = 0$
[mm] $t^2 [/mm] - [mm] 2*\frac{v_0}{g}t [/mm] - [mm] \frac{2*h}{g} [/mm] = 0$

wenn Dir das Schwierigkeiten bereitet kannst Du
es aber auf einem Umweg vermeiden.

( im Folgendem bedeute [mm] $\Delta [/mm] t$ NICHT ein Produkt [mm] $\Delta [/mm] * t$ SONDERN eine Zeitdifferenz,
  und [mm] $\Delta [/mm] ^2 t$ das Quadrat dieser Differenz
)

Klar(?) ist daß die Aufstiegszeit bis zum Stillstand
gleich der Fallzeit bis auf den Boden ist
nämlich
[mm] $t_{max} [/mm] = [mm] \frac{v}{g}$ [/mm]
damit
ergibt sich der höchste Punkt als [mm] $h_{max} [/mm] = [mm] \frac{1}{2}g*t_{max}^2$ [/mm] .
Für
die Fallstrecke $s$ bis zur Höhe vom 5m, $s = [mm] h_{max}-5$ [/mm]
gilt
dann $s = [mm] \frac{1}{2}g*\Delta [/mm] ^2 t$ wobei [mm] $\Delta [/mm] t$ die Zeit [mm] $h_{max}$ [/mm] bis 5m ist,
die
2te der gesuchten Zeiten also [mm] $t_2 [/mm] = [mm] t_{max} [/mm] + [mm] \Delta [/mm] t$
wobei
Du sicherlich $s = [mm] \frac{1}{2}g*\Delta [/mm] ^2 t$ leicht nach [mm] $\Delta [/mm] t$
umstellen kannst.
Nun ist aber auch klar (?), daß der Körper an jedem Punkt seines Weges
aufwärts dieselbe Geschwindigkeit, nur in umgekehrter Richtung, hat wie
abwärts, also auch die Zeit aufwärts, von 5m bis [mm] $h_{max}$ [/mm] gleich der
abwärts, [mm] $\Delta [/mm] t$ sein muß,
die 1te
gesuchte Zeit, [mm] $t_1$ [/mm] vom Boden bis 5m also [mm] $t_1 [/mm] = [mm] t_{max} [/mm] - [mm] \Delta [/mm] t$
ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]