matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAstronomieFriedmann-Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Astronomie" - Friedmann-Gleichung
Friedmann-Gleichung < Astronomie < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Astronomie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Friedmann-Gleichung: Hilfe bei Beweis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:56 Di 01.05.2012
Autor: timgkeller

Aufgabe
Da unser Universum, in einer guten Näherung, räumlich flach ist, kann seine Friedmann-Gleichung wie folgt geschrieben werden:

(1) [mm]\bruch{\dot a}{a}=H_{0}(\bruch{\Omega_{m0}}{a^3}+(1-\Omega_{m0}))^{\bruch{1}{2}[/mm]

Zeigen Sie, dass die folgende Gleichung eine Lösung von Gleichung (1) ist:

(2) [mm]a(t)=(\wurzel{\bruch{\Omega_{m0}}{1-\Omega_{m0}}}sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2}))^{\bruch{2}{3}[/mm]

Hinweis: [mm]sinh'(x)=cosh(x)=\wurzel{1+sinh^2(x)}[/mm]

Hallo,

hier bräuchte ich etwas Hilfe. Da als Hinweis bereits eine Ableitung angegeben ist, ist mein Ansatz die Gleichung (2) abzuleiten. Danach teile ich die Ableitung wieder durch die Gleichung (2) und das sollte dann eigentlich schon der Beweis sein, oder?

Also versuche ich das einfach mal so:

[mm]a'(t)=\wurzel{\bruch{\Omega_{m0}}{1-\Omega_{m0}}}\wurzel{1-\Omega_{m0}}H_{0}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}*(\wurzel{\bruch{\Omega_{m0}}{1-\Omega_{m0}}}sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2}))^{-\bruch{1}{3}[/mm]

[mm] \Rightarrow [/mm]

[mm]\bruch{a'(t)}{a(t)}=\bruch{\wurzel{1-\Omega_{m0}}H_{0}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}{sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}[/mm]

Jetzt komme ich leider nicht mehr weiter. Zu zeigen ist:

[mm]H_{0}\bruch{\wurzel{1-\Omega_{m0}}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}{sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}=H_{0}(\bruch{\Omega_{m0}}{a^3}+(1-\Omega_{m0}))^{\bruch{1}{2}[/mm]

Allerdings komme ich nicht darauf, wie ich sinh wegbekomme. Ich hoffe hier kann mir jemand helfen...

Vielen Dank,
Tim

        
Bezug
Friedmann-Gleichung: Lösung gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Mi 02.05.2012
Autor: timgkeller

Leider kann man als Autor keine Lösung posten, aber ich wollte wenigstens mitteilen, dass ich die Lösung gefunden habe. Evtl. schaut sich das ja nochmal jemand an...

Zu zeigen war:

[mm]H_{0}\bruch{\wurzel{1-\Omega_{m0}}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}{sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}=H_{0}(\bruch{\Omega_{m0}}{a(t)^3}+(1-\Omega_{m0}))^{\bruch{1}{2}[/mm]

mit

[mm]a(t)=(\wurzel{\bruch{\Omega_{m0}}{1-\Omega_{m0}}}sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2}))^{\bruch{2}{3}[/mm]

[mm] \Rightarrow [/mm]

[mm]H_{0}\bruch{\wurzel{1-\Omega_{m0}}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}{sinh(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})} =[/mm]

[mm]H_{0}\bruch{\wurzel{1-\Omega_{m0}}\wurzel{1+sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}{\wurzel{sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}} =[/mm]

[mm]H_{0}\wurzel{1-\Omega_{m0}}\wurzel{1+\bruch{1}{sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}=[/mm]

[mm]H_{0}((1-\Omega_{m0})(1+\bruch{1}{sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}))^{\bruch{1}{2}}=[/mm]

[mm]H_{0}(\bruch{1-\Omega_{m0}}{sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}}+(1-\Omega_{m0}))^{\bruch{1}{2}}=[/mm]

[mm]H_{0}(\bruch{\Omega_{m0}}{\bruch{\Omega_{m0}}{1-\Omega_{m0}}sinh^2(\bruch{3\wurzel{1-\Omega_{m0}}H_{0}t}{2})}+(1-\Omega_{m0}))^{\bruch{1}{2}}=[/mm]

[mm]H_{0}(\bruch{\Omega_{m0}}{a(t)^3}+(1-\Omega_{m0}))^{\bruch{1}{2}[/mm]

q.e.d.

Bezug
                
Bezug
Friedmann-Gleichung: Prima
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Do 03.05.2012
Autor: Infinit

Hallo Tim,
vielen Dank für die Herleitung, die ja Deine eigene Frage beantwortet. Ich setze den Staus mal entsprechend um.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Astronomie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]