matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEigenwertproblemeFrobenius Begleitmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Eigenwertprobleme" - Frobenius Begleitmatrix
Frobenius Begleitmatrix < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobenius Begleitmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Di 26.07.2016
Autor: Mathe-Lily

Aufgabe
Ist [mm] p(t)= t^n + a_{n-1} t^{n-1}+...+ a_0 [/mm] ein beliebiges Polynom, so gilt [mm] p(t)= (-1)^n det(A-t*I_n) [/mm] mit der Frobenius-Begleitmatrix A= [mm] \pmat{ 0 & ... & ... &... & -a_0 \\ 1 & 0 & ... & ... &-a_1 \\ ... & ... & ... & ... & ... \\ ... & ... & 1 & 0 & -a_{n-2} \\ ... & ... & ... & 1 & -a_{n-1} }, [/mm] insbesondere entsprechen die komplexen Nullstellen von p den komplexen Eigenwerten von A.
Für [mm] a \in \IR, \epsilon > 0 [/mm] mit a [mm] \not= [/mm] 0 hat das Polynom [mm] p_0(t)=(t-a)^n [/mm] die n-fache Nullstelle [mm] \lambda [/mm] = a, während das Polynom [mm] p_\epsilon (t) = (t-a)^n - \epsilon [/mm] die Nullstellen [mm] \lambda_k = a- \epsilon^{1/n} e^{\bruch{2i \pi k}{n}} [/mm] (k=1,...,n) besitzt.
Die Polynome [mm] p_0 [/mm] und [mm] p_\epsilon [/mm] unterscheiden sich nur im konstanten Koeffizienten [mm] \epsilon [/mm] und für die Differenz [mm] A-A_\epsilon [/mm] der zugehörigen Begleitmatrizen gilt: [mm] ||A-A_\epsilon||_l [/mm] = [mm] \epsilon [/mm] (l [mm] \in [/mm] {1, 2, [mm] \infty [/mm] }).
Es gilt [mm] |\lambda-\lambda_k| [/mm] = [mm] \epsilon^{1/n} [/mm] und für den relativen Fehler folgt: [mm] \bruch{|\lambda - \lambda_k|}{|\lambda|} = \bruch{\epsilon^{1/n}}{|a|} \bruch{||A||_l}{||A||_l} \bruch{||A-A_\epsilon||_l}{\epsilon} = \bruch{\epsilon^{1/n}}{\epsilon} \bruch{||A||_l}{|a|} \bruch{||A-A_\epsilon||_l}{||A||_l} [/mm].
Der Faktor [mm] \epsilon^{(1-n)/n} [/mm] ist unbeschränkt für [mm] \epsilon \to [/mm] 0, sofern n>1.

Hallo!

Das wurde so als Bsp. einer schlechten Konditionierung der Eigenwertprobleme angeführt. Nach und nach komme ich dahinter, aber ein paar Sachen sind mir noch nicht klar.

Zur Sicherheit, dass ich es richtig verstanden habe: [mm] ||A-A_\epsilon||_l [/mm] = [mm] \epsilon [/mm] zeigt uns, dass der Unterschied der Matrizen sehr klein ist; der letzte Satz aber, dass der Fehler für den Eigenwert sehr groß ist, das heißt es ist eine schlechte Konditionierung.
?

Dann noch etwas zum Anfang: Wie sieht man, dass [mm] p(t)= t^n + a_{n-1} t^{n-1}+...+ a_0 [/mm] und [mm] p(t)= (-1)^n det(A-t*I_n) [/mm]  gelten?

Und eine Frage zu [mm] |\lambda-\lambda_k| [/mm] = [mm] \epsilon^{1/n} [/mm] : Ich habe bisher: [mm] |\lambda-\lambda_k| [/mm] = [mm] |a-a+\epsilon^{1/n} e^{\bruch{2i \pi k}{n}} [/mm] |= [mm] |\epsilon^{1/n} e^{\bruch{2i \pi k}{n}} [/mm] | = [mm] \epsilon^{1/n} |e^{\bruch{2i \pi k}{n}}| [/mm] .  e könnte man noch vereinfachen, da sin, cos 2 [mm] \pi [/mm] -periodisch, aber weiter komme ich nicht. Was denke ich falsch?


Es wäre super, wenn mir jemand helfen könnte!

Liebe Grüße, Lily

        
Bezug
Frobenius Begleitmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Di 26.07.2016
Autor: fred97


> Ist [mm]p(t)= t^n + a_{n-1} t^{n-1}+...+ a_0[/mm] ein beliebiges
> Polynom, so gilt [mm]p(t)= (-1)^n det(A-t*I_n)[/mm] mit der
> Frobenius-Begleitmatrix A= [mm]\pmat{ 0 & ... & ... &... & -a_0 \\ 1 & 0 & ... & ... &-a_1 \\ ... & ... & ... & ... & ... \\ ... & ... & 1 & 0 & -a_{n-2} \\ ... & ... & ... & 1 & -a_{n-1} },[/mm]
> insbesondere entsprechen die komplexen Nullstellen von p
> den komplexen Eigenwerten von A.
> Für [mm]a \in \IR, \epsilon > 0 [/mm] mit a [mm]\not=[/mm] 0 hat das Polynom
> [mm]p_0(t)=(t-a)^n[/mm] die n-fache Nullstelle [mm]\lambda[/mm] = a, während
> das Polynom [mm]p_\epsilon (t) = (t-a)^n - \epsilon[/mm] die
> Nullstellen [mm]\lambda_k = a- \epsilon^{1/n} e^{\bruch{2i \pi k}{n}}[/mm]
> (k=1,...,n) besitzt.
> Die Polynome [mm]p_0[/mm] und [mm]p_\epsilon[/mm] unterscheiden sich nur im
> konstanten Koeffizienten [mm]\epsilon[/mm] und für die Differenz
> [mm]A-A_\epsilon[/mm] der zugehörigen Begleitmatrizen gilt:
> [mm]||A-A_\epsilon||_l[/mm] = [mm]\epsilon[/mm] (l [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{1, 2, [mm]\infty[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}).

> Es gilt [mm]|\lambda-\lambda_k|[/mm] = [mm]\epsilon^{1/n}[/mm] und für den
> relativen Fehler folgt: [mm]\bruch{|\lambda - \lambda_k|}{|\lambda|} = \bruch{\epsilon^{1/n}}{|a|} \bruch{||A||_l}{||A||_l} \bruch{||A-A_\epsilon||_l}{\epsilon} = \bruch{\epsilon^{1/n}}{\epsilon} \bruch{||A||_l}{|a|} \bruch{||A-A_\epsilon||_l}{||A||_l} [/mm].
> Der Faktor [mm]\epsilon^{(1-n)/n}[/mm] ist unbeschränkt für
> [mm]\epsilon \to[/mm] 0, sofern n>1.
>  Hallo!
>  
> Das wurde so als Bsp. einer schlechten Konditionierung der
> Eigenwertprobleme angeführt. Nach und nach komme ich
> dahinter, aber ein paar Sachen sind mir noch nicht klar.
>  
> Zur Sicherheit, dass ich es richtig verstanden habe:
> [mm]||A-A_\epsilon||_l[/mm] = [mm]\epsilon[/mm] zeigt uns, dass der
> Unterschied der Matrizen sehr klein ist;

Ja


> der letzte Satz

> aber, dass der Fehler für den Eigenwert sehr groß ist,
> das heißt es ist eine schlechte Konditionierung.

Ja


>  ?
>  
> Dann noch etwas zum Anfang: Wie sieht man, dass [mm]p(t)= t^n + a_{n-1} t^{n-1}+...+ a_0[/mm]
> und [mm]p(t)= (-1)^n det(A-t*I_n)[/mm]  gelten?

Erst hat man das Polynom t $ p(t)= [mm] t^n [/mm] + [mm] a_{n-1} t^{n-1}+...+ a_0 [/mm] $.

Dann stellt sich die Frage: gibt es eine Matrix A mit: p ist das char. Polynom von A ?

Die Antwort lautet: Ja ! Z.B. leistet

   $A=  [mm] \pmat{ 0 & ... & ... &... & -a_0 \\ 1 & 0 & ... & ... &-a_1 \\ ... & ... & ... & ... & ... \\ ... & ... & 1 & 0 & -a_{n-2} \\ ... & ... & ... & 1 & -a_{n-1} } [/mm] $

das Gewünschte. Das kann man mit dem Entwicklungssatz sehen.




>
> Und eine Frage zu [mm]|\lambda-\lambda_k|[/mm] = [mm]\epsilon^{1/n}[/mm] :
> Ich habe bisher: [mm]|\lambda-\lambda_k|[/mm] = [mm]|a-a+\epsilon^{1/n} e^{\bruch{2i \pi k}{n}}[/mm]
> |= [mm]|\epsilon^{1/n} e^{\bruch{2i \pi k}{n}}[/mm] | =
> [mm]\epsilon^{1/n} |e^{\bruch{2i \pi k}{n}}|[/mm] .  e könnte man
> noch vereinfachen, da sin, cos 2 [mm]\pi[/mm] -periodisch, aber
> weiter komme ich nicht. Was denke ich falsch?

Nix. Schreib Dir hinter die Ohren: für t [mm] \in \IR [/mm] ist [mm] $|e^{it}|$=1. [/mm]

FRED

>  
>
> Es wäre super, wenn mir jemand helfen könnte!
>  
> Liebe Grüße, Lily


Bezug
                
Bezug
Frobenius Begleitmatrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:54 Di 26.07.2016
Autor: Mathe-Lily

Hallo!
Vielen Dank erstmal für die schnelle Antwort!

> Erst hat man das Polynom t [mm]p(t)= t^n + a_{n-1} t^{n-1}+...+ a_0 [/mm].
>  
> Dann stellt sich die Frage: gibt es eine Matrix A mit: p
> ist das char. Polynom von A ?
>  
> Die Antwort lautet: Ja ! Z.B. leistet
>
> [mm]A= \pmat{ 0 & ... & ... &... & -a_0 \\ 1 & 0 & ... & ... &-a_1 \\ ... & ... & ... & ... & ... \\ ... & ... & 1 & 0 & -a_{n-2} \\ ... & ... & ... & 1 & -a_{n-1} }[/mm]
>  
> das Gewünschte. Das kann man mit dem Entwicklungssatz
> sehen.

Brrr... das hatte ich mir schon fast gedacht, das wird aber ganz schön hässlich, oder?

> >

> Nix. Schreib Dir hinter die Ohren: für t [mm]\in \IR[/mm] ist
> [mm]|e^{it}|[/mm]=1.

Also doch ^^ Danke!

Bezug
                        
Bezug
Frobenius Begleitmatrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 03.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 54m 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status vor 8h 37m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 9h 45m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 18h 49m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 11h 42m 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]