matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFrullani
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Frullani
Frullani < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frullani: Frullani, nur Limes gegeben
Status: (Frage) beantwortet Status 
Datum: 20:27 Sa 01.11.2008
Autor: jocen

Hallo,
ich sitze an einem Problem und die Lösung will sich einfach nicht ergeben. Es geht um Frullani Integrale.

Also:   f: [mm] [0,\infty) \to \IR [/mm] , stetig und der Grenzwert [mm] f(\infty) [/mm] für x gegen Unendlich existiert. Mehr ist nicht gegeben, doch schon folgt:

[mm] \integral_{0}^{\infty}{(f(ax) - f(bx))/x dx} [/mm]  =  [mm] \((f(0) [/mm] - [mm] f(\infty))log(b/a) [/mm]

für alle a,b > 0. Meine Versuche scheitern meistens daran,
dass ich die Konvergenz von (f(ax) - f(bx)) nicht in Abhängigkeit von x abschätzen kann.

Vielen Dank und noch schönes WE

        
Bezug
Frullani: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 So 02.11.2008
Autor: rainerS

Hallo!

> Hallo,
>  ich sitze an einem Problem und die Lösung will sich
> einfach nicht ergeben. Es geht um Frullani Integrale.
>
> Also:   f: [mm][0,\infty) \to \IR[/mm] , stetig und der Grenzwert
> [mm]f(\infty)[/mm] für x gegen Unendlich existiert. Mehr ist nicht
> gegeben, doch schon folgt:
>  
> [mm]\integral_{0}^{\infty}{(f(ax) - f(bx))/x dx}[/mm]  =  [mm]\((f(0)[/mm] -
> [mm]f(\infty))log(b/a)[/mm]
>  
> für alle a,b > 0. Meine Versuche scheitern meistens daran,
> dass ich die Konvergenz von (f(ax) - f(bx)) nicht in
> Abhängigkeit von x abschätzen kann.

Ein paar Ideen:

Mit der Substitution y=ax entsteht:

  [mm]\integral_{0}^{\infty}{(f(ax) - f(bx))/x dx} = \integral_{0}^{\infty}{(f(x) - f(\bruch{b}{a}x))/x dx} [/mm]

und mit y=bx:

  [mm]\integral_{0}^{\infty}{(f(ax) - f(bx))/x dx} = \integral_{0}^{\infty}{(f( \bruch{a}{b}x) - f(x))/x dx} [/mm]

Wenn ich das Integral mit F(a,b) abkürze, haben wir also

[mm] F(a,b) = F(1,b/a) = F(a/b,1) [/mm]

Ferner ist [mm]F(a,b) = -F(b,a)[/mm], woraus [mm] F(1,c) = -F(1,1/c) [/mm] folgt.

Es gilt auch: [mm]F(a,b) + F(b,c) = F(a,c) \implies F(1,b/a) + F(1,c/b) = F(1,c/a) \implies F(1,a*b) = F(1,a) + F(1,b) [/mm].

Allein aus diesen Funktionalgleichungen würde ich schon schließen, dass $F(a,b) = [mm] C*\ln\bruch{b}{a} [/mm] $ sein muss, denn welche Funktion außer dem Logarithmus erfüllt diese?

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]