Fundamentalsatz der Algebra < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:05 Di 10.01.2012 | Autor: | Lustique |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Fundamentalsatz der Algebra.
Es sei $p:\mathbb{C}\to\mathbb{C}, p(z)=\sum_{k=0}^n a_kz^k$ eine Polynomfunktion vom Grad $n\in \mathbb{N}$ (d.h. $a_n\neq 0$). Dann besitzt $p$ eine Nullstelle, d.h. es gibt ein $\xi\in \mathbb{C}$ mit $p(\xi)=0$.
Beweis (nach Argand, 1814):
1. Schritt:
Wir zeigen, dass die Funktion $\left\lvert p \right\rvert$ das Minimum auf $\mathbb{C}$ annimmt. Es gibt $r>0$, so dass gilt
$\displaystyle \left\lvert z\right\rvert^{-n}\left\lvert p(z)\right\rvert\geqslant \left\lvert a_n\right\rvert - \sum_{j=1}^n \underbrace{\left\lvert a_{n-j}\right\rvert \left\lvert z\right\rvert^{-j}}_{\leqslant \frac{\left\lvert a_{n-j}\right\rvert}{r^j}\overset{r\to\infty}\longrightarrow 0}} \geqslant \frac{\left\lvert a_n\right\rvert}{2} >0$
... |
Hallo mal wieder,
ich wollte euch dieses Mal bitten, mir beim Verständnis eines Beweises zum Fundamentalsatz der Algebra (nach Argand, steht so ähnlich im Heuser) zu helfen.
Ich habe dafür einfach mal die ersten paar Zeilen aus der Version oben in das Aufgabenstellungsfenster geschrieben, welche in der Vorlesung (Analysis I) dran kam.
Könntet ihr mir dafür zunächst erklären, wie genau der erste Teil der Ungleichung zustande kommt? (Wenn ich dann den Rest auch nicht verstehe, ergänze ich den dann noch)
Warum steht da beispielsweise $\sum_{j=1}^n \left\lvert a_{n-j}\right\rvert \left\lvert z\right\rvert^{-j}$ und nicht $\left\lvert\sum_{j=1}^n a_{n-j} z^{-j}\right\rvert$, oder so etwas in der Art?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:36 Di 17.01.2012 | Autor: | Lustique |
Danke schon mal für deine Antwort! Im Moment bin ich leider etwas im Stress, und hatte deswegen noch keine Zeit, deine Antwort komplett nachzuvollziehen, aber wenn ich das getan habe, werden, zumindest befürchte ich das, noch mal Fragen zum Rest des Beweises kommen.
|
|
|
|