matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFundamentalsatz der Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Fundamentalsatz der Algebra
Fundamentalsatz der Algebra < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsatz der Algebra: Erklärung zu Beweis (Argand)
Status: (Frage) beantwortet Status 
Datum: 22:05 Di 10.01.2012
Autor: Lustique

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Fundamentalsatz der Algebra.

Es sei $p:\mathbb{C}\to\mathbb{C}, p(z)=\sum_{k=0}^n a_kz^k$ eine Polynomfunktion vom Grad $n\in \mathbb{N}$ (d.h. $a_n\neq 0$). Dann besitzt $p$ eine Nullstelle, d.h. es gibt ein $\xi\in \mathbb{C}$ mit $p(\xi)=0$.

Beweis (nach Argand, 1814):

1. Schritt:

Wir zeigen, dass die Funktion $\left\lvert p \right\rvert$ das Minimum auf $\mathbb{C}$ annimmt. Es gibt $r>0$, so dass gilt

$\displaystyle \left\lvert z\right\rvert^{-n}\left\lvert p(z)\right\rvert\geqslant \left\lvert a_n\right\rvert - \sum_{j=1}^n \underbrace{\left\lvert a_{n-j}\right\rvert \left\lvert z\right\rvert^{-j}}_{\leqslant \frac{\left\lvert a_{n-j}\right\rvert}{r^j}\overset{r\to\infty}\longrightarrow 0}} \geqslant \frac{\left\lvert a_n\right\rvert}{2} >0$

...



Hallo mal wieder,

ich wollte euch dieses Mal bitten, mir beim Verständnis eines Beweises zum Fundamentalsatz der Algebra (nach Argand, steht so ähnlich im Heuser) zu helfen.

Ich habe dafür einfach mal die ersten paar Zeilen aus der Version oben in das Aufgabenstellungsfenster geschrieben, welche in der Vorlesung (Analysis I) dran kam.

Könntet ihr mir dafür zunächst erklären, wie genau der erste Teil der Ungleichung zustande kommt? (Wenn ich dann den Rest auch nicht verstehe, ergänze ich den dann noch)

Warum steht da beispielsweise $\sum_{j=1}^n \left\lvert a_{n-j}\right\rvert \left\lvert z\right\rvert^{-j}$ und nicht $\left\lvert\sum_{j=1}^n a_{n-j} z^{-j}\right\rvert$, oder so etwas in der Art?

        
Bezug
Fundamentalsatz der Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 02:51 Mi 11.01.2012
Autor: Walde

Hi Lustique,

zunächst mal ist ja eine Variante der Dreiecksungleichung: [mm] |x+y|\ge|x|-|y| [/mm] (siehe auch []Wikipedia) und mit der normalen Dreiecksungl. auch [mm] |x+y+z|\ge|x|-|y+z|\ge|x|-|y|-|z| [/mm] (usw. für noch mehr Summanden).

Dann betrachte:
[mm] |p(x)|=|\summe_{k=0}^{n}a_k z^k|=|a_n z^n+\summe_{k=0}^{n-1}a_k z^k|\ge|a_n z^n|-\summe_{k=1}^{n}|a_{k-1} z^{k-1}| [/mm] beim letzten Schritt ist der Index verschoben worden und die obige Vorbemerkung verwendet worden. Die Summe (ganz rechts) läuft immer noch von [mm] |a_0 z^0|+|a_1 z^1|\ldots|a_{n-2}z^{n-2}|+|a_{n-1}z^{n-1}|, [/mm] aber diese Reihenfolge soll jetzt umgedreht werden, dann wird daraus: [mm] \summe_{j=1}^{n}|a_{n-j} z^{n-j}|. [/mm] Dann ist man bei :

[mm] |p(x)|\ge|a_n z^n|-\summe_{j=1}^{n}|a_{n-j} z^{n-j}| [/mm] jetzt auf der rechten Seite nur noch [mm] |z^n| [/mm] ausklammern und dadurch auf beiden Seiten dividieren, fertig ist die Laube ,d.h. das erste Ungleichheitszeichen :-)

LG walde

Bezug
                
Bezug
Fundamentalsatz der Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Di 17.01.2012
Autor: Lustique

Danke schon mal für deine Antwort! Im Moment bin ich leider etwas im Stress, und hatte deswegen noch keine Zeit, deine Antwort komplett nachzuvollziehen, aber wenn ich das getan habe, werden, zumindest befürchte ich das, noch mal Fragen zum Rest des Beweises kommen. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]