matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFundamentalsystem/Wronskidet.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Fundamentalsystem/Wronskidet.
Fundamentalsystem/Wronskidet. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem/Wronskidet.: Frage
Status: (Frage) beantwortet Status 
Datum: 01:43 So 10.04.2005
Autor: snowda

(ups, hab mich im Forum vertan, wollte eigentlich zur Hochschule, kann ich das noch ändern?)

Hallo,

ich habe leider kaum Beispiele mit Lösungen zu folgendem Aufgabentyp und würde  gern wissen, ob ich nichts falsch mache, bzw. ob's nicht irgendwo einfacher geht:

Berechnen Sie ein Fundamentalsystem von

y'= [mm] \pmat{ 0 & 1 \\ - \bruch{1}{x}& \bruch{x+1}{x} } [/mm] y  = Ay

Eine Lösung ist  [mm] y_{1}(x) [/mm] = [mm] e^{x} \pmat{ 1 \\ 1 }. [/mm]

Ges.:  [mm] y_{2}= \pmat{ u \\ v } [/mm]

w(x) ist Wronskideterminante.
________

w(x) = c [mm] \* e^{ \integral_{}^{x} { Spur A(t) dt}} [/mm] = c [mm] \* e^{ \integral_{}^{x} { \bruch{1+t}{t} dt}} [/mm] = c [mm] \* [/mm] x [mm] \* e^{x} [/mm]

andererseits:

w(x) = det  [mm] \pmat{ e^{x} & u \\ e^{x} &v } [/mm] = [mm] e^{x} [/mm] ( v- u) != c [mm] \*x \*e^{x} [/mm]

Betrachte nun:

[mm] \pmat{ u' \\ v' }= \pmat{ v \\ -\bruch{1}{x}*u + \bruch{1+x}{x}*v } [/mm] =  [mm] \pmat{ cx+u \\ -\bruch{1}{x}*(v- cx) + \bruch{1+x}{x}*v }= \pmat{ cx+u \\ v+c } [/mm]

=> [mm] \bruch{dv}{dx}=v+c [/mm]

[mm] \integral_{}^{V} [/mm] { [mm] \bruch{dv}{v+c}}= \integral_{}^{X} [/mm] {dx}

v+c = [mm] c_{2}\*e^{x} [/mm]
[mm] v=c_{2}\*e^{x}-c [/mm]

=> u = [mm] c_{2}\*e^{x}-c(1-x) [/mm]

setze: [mm] c_{x}=c [/mm] = 1

[mm] y_{2}= \pmat{ e^{x}-(1+x) \\ e^{x}-1 } [/mm]



danke für's Lesen,

Daniel








Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fundamentalsystem/Wronskidet.: Alles ok
Status: (Antwort) fertig Status 
Datum: 18:14 So 10.04.2005
Autor: MathePower

Hallo snowda,

da hast Du fast alles richtig gemacht.

> [mm]y_{2}= \pmat{ e^{x}-(1+x) \\ e^{x}-1 }[/mm]

Hier siehst Du, daß [mm]y_{1}[/mm] in [mm]y_{2}[/mm] enthalten ist.
Demzufolge ist eine zweite Lösung:

[mm]y_{2}= \pmat{ -(1+x) \\ -1 }[/mm]

Gruß
MathePower


Bezug
                
Bezug
Fundamentalsystem/Wronskidet.: danke
Status: (Frage) beantwortet Status 
Datum: 18:56 So 10.04.2005
Autor: snowda

Hi MathePower,

danke fürs Korrekturlesen.
Muss ich die erste Lösung denn aus der 2. entfernen?

Das Fundamentalsystem ist doch ein Vektorraum und daher ist doch, wenn
mein FS. [mm] [/mm] ist, auch [mm] y_{3}=y_{2}+ \alpha y_{1} [/mm] linear unabhängig von [mm] y_{1} [/mm] (Austauschsatz von Steinitz) und somit auch [mm] [/mm] ein FS, oder?

Oder ist das Entfernen eine rein kosmetische Maßnahme?


Gruß,
Daniel





Bezug
                        
Bezug
Fundamentalsystem/Wronskidet.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 So 10.04.2005
Autor: MathePower

Hallo,

das kannst Du so stehen lassen. da es sich ja um 2 linear unabhängige Lösungen handelt. Besser ist es schon, wenn Du die 1. Lösung aus der 2. entfernst.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]