matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFunktion in R^4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Funktion in R^4
Funktion in R^4 < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion in R^4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 06.03.2008
Autor: Zuggel

Aufgabe
Die Funktion q(x,y,z,w)= x²+y²+w² in [mm] R^{4} [/mm] ist:

a) semidefiniert positiv
b) semidefiniert negativ
c) definiert positiv
d) undefiniert

Hallo alle miteinander!

Also zu der Aufgabe, laut Lösung sollte Antwort a) richtig sein. Meiner Meinung nach, sollte es jedohc c) sein, im variieren der 3 Werte in R, bekomme ich doch nur psoitive Ergebnisse heraus, somit kann die Funktion doch nicht negativ sein, oder?

Also ich bin komplett ratlos, wahrscheinlich wird das [mm] R^{4} [/mm] hier etwas ausmachen. Was ich mir zwar nicht vorstellen kann, aber naja.

Ich bitte um Rat!

Dankesehr
lg
Zuggel

        
Bezug
Funktion in R^4: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 06.03.2008
Autor: leduart

Hallo
semidefinit sicher nicht semidefiniert- so was gibts nicht - ist eine Fkt wenn [mm] f\ge0 [/mm] gilt.
definit, wenn f>0 definit wäre also z.Bsp [mm] f=x^2+y^2+z^2+1 [/mm]
Gruss leduart

Bezug
                
Bezug
Funktion in R^4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Do 06.03.2008
Autor: Zuggel


> Hallo
>  semidefinit sicher nicht semidefiniert- so was gibts nicht
> - ist eine Fkt wenn [mm]f\ge0[/mm] gilt.
>  definit, wenn f>0 definit wäre also z.Bsp [mm]f=x^2+y^2+z^2+1[/mm]
>  Gruss leduart

Also semidefinit ist also [mm] f\ge0 [/mm]
Definit ist wenn f>0 ist?
Und undefinit?

Somit in meinem Fall, bei der Variation in R kann die Funktion auch den Wert 0 annehmen, also ist sie semidefinit!

Tut mir leid, ich habe die Aufgabe aus dem ital. Übersetzt und war der Meinung, dass "definito" dem deutschen "definiert" gleichzusetzen ist! Mein Fehler!

Dankesehr
lg
Zuggel

Bezug
                        
Bezug
Funktion in R^4: indefinit
Status: (Antwort) fertig Status 
Datum: 18:31 Do 06.03.2008
Autor: clwoe

Hi,

undefinit gibt es auch nicht. Das heißt "indefinit" und es gilt f<0

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]