matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktion von zwei Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktion von zwei Variablen
Funktion von zwei Variablen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion von zwei Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Sa 26.02.2011
Autor: berndbrot

Aufgabe
Hallo,
   es geht eigentlich um ein schwingungstechnisches Problem, ich habe damit allerdings erst mal ein mathematisches Problem. Ich fass die Aufgabenstellung mal kurz zusammen:
Gegeben ist eine quadratische Platte (Länge=Breite=a), gelenkig gelagert. Da sind verschiedene Gewichte drauf. Dadurch verformt sich die Platte. Als Verformungsfunktion kann eine Sinusfunktion angenommen werden.

In der Musterlösung steht nun folgendes:

[mm] w_{(x)}=w_{0}*sin(\pi*\bruch{x}{a}) [/mm]
[mm] w_{(y)}=w_{0}*sin(\pi*\bruch{y}{a}) [/mm]

Das versteh ich noch. Jetzt werden die beiden Funktionen aber zusammengefasst zu:

[mm] w_{(x,y)}=w_{0}*sin(\pi*\bruch{x}{a})*sin(\pi*\bruch{y}{a}) [/mm]

Warum darf man die denn einfach so mit einer Multiplikation zusammenfassen? Gibts da irgendwelche mathematischen Regeln für?
Und noch was anderes, ich hab mir überlegt, ich könnte ja auch als Verformungsansatz eine "statische Biegelinie" annehmen. Dann würde die Verformungsfunktion so aussehen:

[mm] w_{(x)}=w_{0}*(3\bruch{x}{a}-4\bruch{x^{3}}{a^{3}}) [/mm]
[mm] w_{(y)}=w_{0}*(3\bruch{y}{a}-4\bruch{y^{3}}{a^{3}}) [/mm]

Wie macht man daraus denn eine Funktion [mm] w_{(x,y)}??? [/mm]

Danke für eure Hilfe!

Gruß

        
Bezug
Funktion von zwei Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Sa 26.02.2011
Autor: leduart

Hallo berndbrot

> Hallo,
> es geht eigentlich um ein schwingungstechnisches Problem,
> ich habe damit allerdings erst mal ein mathematisches
> Problem. Ich fass die Aufgabenstellung mal kurz zusammen:
>  Gegeben ist eine quadratische Platte (Länge=Breite=a),
> gelenkig gelagert. Da sind verschiedene Gewichte drauf.
> Dadurch verformt sich die Platte. Als Verformungsfunktion
> kann eine Sinusfunktion angenommen werden.
>  In der Musterlösung steht nun folgendes:
>  
> [mm]w_{(x)}=w_{0}*sin(\pi*\bruch{x}{a})[/mm]
>  [mm]w_{(y)}=w_{0}*sin(\pi*\bruch{y}{a})[/mm]

Wenn man hier direkt statt [mm] $w_{(x)}=w_{0}*sin(\pi*\bruch{x}{a})$ [/mm]
einsetzte dass das [mm] w_0 [/mm] noch von y abhängt, also besser schriebe :
[mm] $w_{(x)}=w_{y}*sin(\pi*\bruch{x}{a})$ [/mm]
dann würdest du es verstehen und kannst mit deiner anderen fkt genauso vorgehen. [mm] w_x [/mm] ist ja an der Stelle (x,y) von y abhängig, so dass der alleinige Ansatz [mm] $w_{(x)}=w_{0}*sin(\pi*\bruch{x}{a})$ [/mm] nur gilt wnn in y richtung gar keine verformung passiert.

> Das versteh ich noch. Jetzt werden die beiden Funktionen
> aber zusammengefasst zu:
>  
> [mm]w_{(x,y)}=w_{0}*sin(\pi*\bruch{x}{a})*sin(\pi*\bruch{y}{a})[/mm]

Wird es so klarer- auf jeden fall ist das mein mathematisch-physikalisches Verständnis der Aussage,
Aber so sicher bin ich mit dder speziellen anwendung nicht drum nur halb beantwortet.
Gruss leduart


Bezug
                
Bezug
Funktion von zwei Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Sa 26.02.2011
Autor: berndbrot

Ahja ok, so macht das mehr Sinn. Danke!

Bezug
        
Bezug
Funktion von zwei Variablen: Chladnische Figuren
Status: (Antwort) fertig Status 
Datum: 11:45 So 27.02.2011
Autor: Al-Chwarizmi


> Hallo,
> es geht eigentlich um ein schwingungstechnisches Problem,
> ich habe damit allerdings erst mal ein mathematisches
> Problem. Ich fass die Aufgabenstellung mal kurz zusammen:
>  Gegeben ist eine quadratische Platte (Länge=Breite=a),
> gelenkig gelagert. Da sind verschiedene Gewichte drauf.
> Dadurch verformt sich die Platte. Als Verformungsfunktion
> kann eine Sinusfunktion angenommen werden.
>  In der Musterlösung steht nun folgendes:
>  
> [mm]w_{(x)}=w_{0}*sin(\pi*\bruch{x}{a})[/mm]
>  [mm]w_{(y)}=w_{0}*sin(\pi*\bruch{y}{a})[/mm]
>  
> Das versteh ich noch. Jetzt werden die beiden Funktionen
> aber zusammengefasst zu:
>  
> [mm]w_{(x,y)}=w_{0}*sin(\pi*\bruch{x}{a})*sin(\pi*\bruch{y}{a})[/mm]
>  
> Warum darf man die denn einfach so mit einer Multiplikation
> zusammenfassen? Gibts da irgendwelche mathematischen Regeln
> für?
>  Und noch was anderes, ich hab mir überlegt, ich könnte
> ja auch als Verformungsansatz eine "statische Biegelinie"
> annehmen. Dann würde die Verformungsfunktion so aussehen:
>  
> [mm]w_{(x)}=w_{0}*(3\bruch{x}{a}-4\bruch{x^{3}}{a^{3}})[/mm]
>  [mm]w_{(y)}=w_{0}*(3\bruch{y}{a}-4\bruch{y^{3}}{a^{3}})[/mm]
>  
> Wie macht man daraus denn eine Funktion [mm]w_{(x,y)}???[/mm]
>  
> Danke für eure Hilfe!
>  
> Gruß


Hallo berndbrot,

grundsätzlich kommen für eine quadratische Platte sehr viele
Schwingungsarten in Frage. Ein Bild davon geben die sogenannten

      []"Chladnischen Klangfiguren"

Ein Video dazu findet man unter:  
http://www.youtube.com/watch?v=Qf0t4qIVWF4

Mathematisch gesehen stecken hinter diesen möglichen Lösungen
Differentialgleichungen. Beim Googeln "schwingende Membran"
bin ich z.B. auf diese Arbeit gestoßen:

      []Leonardo Aguirre: Schwingende Membranen

Die Lösung mit dem Produkt einer Sinusfunktion von x und
einer Sinusfunktion von y ist nur eine von vielen Lösungen.
Ihr entsprechen die Chladnischen Figuren, bei welchen das
Pulver sich in einem Rechtecksgitter aus geraden Linien
anordnet.

Dazu noch ein weiterer Link:   []Applets
(zur eingespannten rechteckigen schwingenden Membran)

LG    Al-Chw.






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]