matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenFunktionale auf Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Funktionale auf Vektorraum
Funktionale auf Vektorraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionale auf Vektorraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:20 So 27.04.2014
Autor: SiuNimTau

Aufgabe
Es seien $g, [mm] f_1, f_2$ [/mm] lineare Funktionale auf einem endlich-dimensionalen K-Vektorraum $V$ mit Nullräumen $N, [mm] N_1, N_2$. [/mm] Zeige: Genau dann ist [mm] $g\in span_K (\{f_1,f_2\})$, [/mm] wenn [mm] $N_1\cap N_2\subseteq [/mm] N$.

Hallo an alle lieben Helfer,

bei dieser Aufgabe komme ich einfach nicht weiter.
Was ich mir bis jetzt überlegt hab ist folgendes:

Ich setze zunächst [mm] $S^0:=\{f_1,f_2\}$ [/mm] (Annihilator von S). Dann ist [mm] $S=\{a\in V|f_i(a)=0, i=1,2\}$ [/mm] und damit doch insbesondere [mm] $S=N_1\cap N_2=ker(f_1)\cap ker(f_2)$. [/mm]

Weiter bin ich leider nicht gekommen. Es gilt ja nun, die zwei Teilimplikationen zu zeigen, aber wie??

Ich freue mich auf eure Antworten,
Liebe Grüße

        
Bezug
Funktionale auf Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 27.04.2014
Autor: hippias

[mm] $\Rightarrow:$ [/mm] Sei [mm] $g\in \text{span}_{K}\{f_{1}, f_{2}\}$. [/mm] Dann existieren [mm] $\ldots\in [/mm] K$ so, dass $g= [mm] \ldots+ \ldots$. [/mm] Sei [mm] $x\in N_{1}\cap N_{2}$. [/mm] Z.z. [mm] $x\in [/mm] N$, d.h. $g(x)= 0$. Dazu verwende obige Darstellung von $g$.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]