matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Funktionen
Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: stetig und nicht diff'bar
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 23.05.2016
Autor: anil_prim

Aufgabe
Zeigen Sie, dass die durch
f(x) = [mm] \summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n} [/mm] definierte Funktion f: [mm] \IR \to \IR [/mm] auf ganz [mm] \IR [/mm] stetig, aber in keinem Punkt x [mm] \in \IR [/mm] differenzierbar ist.

Hallo,

zur Stetigkeit:

Es gilt [mm] |f(x)-f(x_0)| [/mm] = [mm] |\summe_{n=1}^{\infty}\bruch{2^n}{3^n}(sin2^nx [/mm] - [mm] sin2^nx_0)| [/mm]

Nun sollte ich ja ein geeignetes [mm] \delta [/mm] und [mm] \varepsilon [/mm] finden.
Kann mir dabei jemand einen Tipp geben? Vor allem durch die unendliche Reihe fällt es mir schwer hier weiterzukommen.

Zur Differenzierbarkeit:

durch die h-Methode folgt:

[mm] \limes_{h\rightarrow0}\bruch{f(x_0+h) - f(x_0)}{h} [/mm] = [mm] \limes_{h\rightarrow0}\summe_{n=1}^{\infty}(\bruch{2}{3})^n\bruch{sin2^n(x_0-h)-sin(2^nx_0)}{h} [/mm] = [mm] \summe_{n=1}^{\infty} \limes_{h\rightarrow0}((\bruch{2}{3})^n\bruch{sin2^n(x_0-h)-sin(2^nx_0)}{h}) [/mm]

Auch hier weiß ich gerade nicht wie ich weitermachen soll.

Kann mir hier jemand helfen?

Viele Grüße
Anil

        
Bezug
Funktionen: Stetigkeit
Status: (Antwort) fertig Status 
Datum: 13:56 Mo 23.05.2016
Autor: Al-Chwarizmi


> Zeigen Sie, dass die durch
>  f(x) = [mm]\summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n}[/mm]
> definierte Funktion f: [mm]\IR \to \IR[/mm] auf ganz [mm]\IR[/mm] stetig,
> aber in keinem Punkt x [mm]\in \IR[/mm] differenzierbar ist.
>  Hallo,
>  
> zur Stetigkeit:
>  
> Es gilt [mm]|f(x)-f(x_0)|\ =\ |\summe_{n=1}^{\infty}\bruch{2^n}{3^n}(sin2^nx\ -\ sin2^nx_0)|[/mm]
>
> Nun sollte ich ja ein geeignetes [mm]\delta[/mm] und [mm]\varepsilon[/mm]
> finden.
>  Kann mir dabei jemand einen Tipp geben? Vor allem durch
> die unendliche Reihe fällt es mir schwer hier
> weiterzukommen.


Hallo Anil

ein Tipp zum Beweis der Stetigkeit:

Zerlege die Reihe in eine endliche Summe und eine Restreihe:

        [mm] $\summe_{n=1}^{\infty}.......\ [/mm] \ =\ \ [mm] \underbrace{\summe_{n=1}^{N}.......}_{S(N)}\ [/mm] \ +\ [mm] \underbrace{\summe_{n=N+1}^{\infty}.......} [/mm] _{R(N)}$

und zeige dann, dass S(N) für jedes [mm] N\in\IN [/mm]  stetig ist und dass

       [mm] $\limes_{N\to\infty}R(N)\ [/mm] =\ 0$

ist und dass man aus beidem zusammen auf die Stetigkeit der
gesamten Funktion f schließen kann.

LG  ,    Al-Chw.

Bezug
                
Bezug
Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Mo 23.05.2016
Autor: fred97


> > Zeigen Sie, dass die durch
>  >  f(x) = [mm]\summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n}[/mm]
> > definierte Funktion f: [mm]\IR \to \IR[/mm] auf ganz [mm]\IR[/mm] stetig,
> > aber in keinem Punkt x [mm]\in \IR[/mm] differenzierbar ist.
>  >  Hallo,
>  >  
> > zur Stetigkeit:
>  >  
> > Es gilt [mm]|f(x)-f(x_0)|\ =\ |\summe_{n=1}^{\infty}\bruch{2^n}{3^n}(sin2^nx\ -\ sin2^nx_0)|[/mm]
> >
> > Nun sollte ich ja ein geeignetes [mm]\delta[/mm] und [mm]\varepsilon[/mm]
> > finden.
>  >  Kann mir dabei jemand einen Tipp geben? Vor allem durch
> > die unendliche Reihe fällt es mir schwer hier
> > weiterzukommen.
>  
>
> Hallo Anil
>  
> ein Tipp zum Beweis der Stetigkeit:
>  
> Zerlege die Reihe in eine endliche Summe und eine
> Restreihe:
>  
> [mm]\summe_{n=1}^{\infty}.......\ \ =\ \ \underbrace{\summe_{n=1}^{N}.......}_{S(N)}\ \ +\ \underbrace{\summe_{n=N+1}^{\infty}.......} _{R(N)}[/mm]
>  
> und zeige dann, dass S(N) für jedes [mm]N\in\IN[/mm]  stetig ist
> und dass
>  
> [mm]\limes_{N\to\infty}R(N)\ =\ 0[/mm]
>
> ist und dass man aus beidem zusammen auf die Stetigkeit
> der
>  gesamten Funktion f schließen kann.

Hallo Al,

das ist aber nur richtig, wenn die vorgelegte Funktionenreihe auf [mm] \IR [/mm] gleichmäßig konvergiert.

Das tut sie ! Aber dann bekommt man die Stetigkeit einfacher (s. meine Antwort).

Gruß FRED

>  
> LG  ,    Al-Chw.


Bezug
        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 23.05.2016
Autor: fred97


> Zeigen Sie, dass die durch
>  f(x) = [mm]\summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n}[/mm]
> definierte Funktion f: [mm]\IR \to \IR[/mm] auf ganz [mm]\IR[/mm] stetig,
> aber in keinem Punkt x [mm]\in \IR[/mm] differenzierbar ist.
>  Hallo,
>  
> zur Stetigkeit:
>  
> Es gilt [mm]|f(x)-f(x_0)|[/mm] =
> [mm]|\summe_{n=1}^{\infty}\bruch{2^n}{3^n}(sin2^nx[/mm] -
> [mm]sin2^nx_0)|[/mm]
>
> Nun sollte ich ja ein geeignetes [mm]\delta[/mm] und [mm]\varepsilon[/mm]
> finden.

Uii , uii , ich glaube Du bist mit dem Stetigkeitsbegriff ein wenig auf Kriegsfuß.

  zu vorgegebenem [mm]\varepsilon >0[/mm] muss ein [mm] \delta [/mm] >0 gefunden werden mit: blablablubber...

Wie lautet denn blablablubber ?


>  Kann mir dabei jemand einen Tipp geben? Vor allem durch
> die unendliche Reihe fällt es mir schwer hier
> weiterzukommen.

Es geht ohne [mm]\delta[/mm] und [mm]\varepsilon[/mm] ....

Die Reihe  $ [mm] \summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n} [/mm] $ konvergiert auf [mm] \IR [/mm] gleichmäßig, denn

   [mm] $|\bruch{2^nsin(2^nx)}{3^n} [/mm] | [mm] \le (\bruch{2}{3})^n [/mm] $  für alle n und alle x.

[mm] \summe_{n=1}^{\infty} (\bruch{2}{3})^n [/mm] ist konvergent.

Nach dem Weierstraßschen Majorantenkriterium ist dann   $ [mm] \summe_{n=1}^{\infty}\bruch{2^nsin(2^nx)}{3^n} [/mm] $  auf [mm] \IR [/mm] glm. konvergent.

Da die Funktionen $ x [mm] \mapsto \bruch{2^nsin(2^nx)}{3^n}$ [/mm]  stetig sind, folgt daraus die Stetigkeit von f.

Zur Differenzierbarkeit:

diesen Aufgabenteil halte ich für viel zu schwer für eine Übungsaufgabe.

Deshalb : google "stetig aber nicht differenzierbar beispiel"

FRED

>  
> Zur Differenzierbarkeit:
>  
> durch die h-Methode folgt:
>  
> [mm]\limes_{h\rightarrow0}\bruch{f(x_0+h) - f(x_0)}{h}[/mm] =
> [mm]\limes_{h\rightarrow0}\summe_{n=1}^{\infty}(\bruch{2}{3})^n\bruch{sin2^n(x_0-h)-sin(2^nx_0)}{h}[/mm]
> = [mm]\summe_{n=1}^{\infty} \limes_{h\rightarrow0}((\bruch{2}{3})^n\bruch{sin2^n(x_0-h)-sin(2^nx_0)}{h})[/mm]
>  
> Auch hier weiß ich gerade nicht wie ich weitermachen
> soll.
>  
> Kann mir hier jemand helfen?
>  
> Viele Grüße
>  Anil


Bezug
                
Bezug
Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mo 23.05.2016
Autor: anil_prim

Stetigkeit:

[mm] \forall(\varepsilon>0) \exists(\delta>0) \forall x\in [/mm] D [mm] |z-z_0|<\delta |f(z)-f(z_0)| [/mm] < [mm] \varepsilon [/mm]

Eigentlich ist mir Stetigkeit schon klar, dachte ich..

Bei Google finde ich nur das Beispiel zur Differenzierbarkeit, aber nicht den Beweis..

Bezug
                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 23.05.2016
Autor: fred97


> Stetigkeit:
>  
> [mm]\forall(\varepsilon>0) \exists(\delta>0) \forall x\in[/mm] D
> [mm]|z-z_0|<\delta |f(z)-f(z_0)|[/mm] < [mm]\varepsilon[/mm]

Besser:

    [mm]\forall(\varepsilon>0) \exists(\delta>0) \forall z\in[/mm] D [mm]|z-z_0|<\delta \Rightarrow |f(z)-f(z_0)|[/mm] < [mm]\varepsilon[/mm]



>  
> Eigentlich ist mir Stetigkeit schon klar, dachte ich..
>  
> Bei Google finde ich nur das Beispiel zur
> Differenzierbarkeit, aber nicht den Beweis..

Das stimmt nicht. Wahrscheinlich bist Du bei Wiki hängengeblieben.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 31m 5. HJKweseleit
UWTheo/unendlicher Würfelwurf Aufgabe
Status vor 3h 35m 10. Siebenstein
Transformationen/Dirac und Rechteck
Status vor 4h 02m 3. Gonozal_IX
UStoc/Cov(X,Y)
Status vor 9h 48m 7. fred97
UAnaRn/Kettenregel Mehrdimensional
Status vor 1d 2h 22m 2. Al-Chwarizmi
SStoc/Münze
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]