matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktionen
Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Unstetigkeit
Status: (Frage) beantwortet Status 
Datum: 20:49 So 21.06.2009
Autor: idonnow

Aufgabe
Gegeben sei die Funktion f: [mm] \IR \to \IR, f(x)=f(n)=\left\{\begin{matrix} sin \bruch{1}{x}, & \mbox{für}x \not=0 \mbox{} \\ 0, & \mbox{für}x = 0 \mbox{ } \end{matrix}\right. [/mm]

a) Zeigen Sie, dass f bei x=0 unstetig ist. Hinweis: Lösen Sie erst den folgenden Punkt

b) Betrachten Sie die Folgen{xn}n=1 [mm] \infty [/mm] mit xn= [mm] \bruch{1}{a+2 \pi n} [/mm] für beliebige a E [- [mm] \pi, \pi]. [/mm] Berechnen Sie   [mm] \limes_{n \to \infty} [/mm] f [mm] x_n. [/mm]

Hallo!


Ich weiß zwar was Stetigkeit bedeutet, aber ich verstehe den Aufgabenteil b gaaaaaaaaaaaaar nicht. Ich verstehe nicht, was ich machen soll und was diese xn-Definition aussagt.


Vieln Dank

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 So 21.06.2009
Autor: kuemmelsche

Guten Abend,

ihr hattet bestimmt einen Satz, der ungefähr folgendes aussagt:

f ist stetig in [mm] $x_0$ \gdw [/mm] Für jede Folge mit [mm] $x_n \to x_0$ [/mm] gilt [mm] $f(x_n) \to f(x_0)$ [/mm] für $n [mm] \to \infty$. [/mm]

D.h. andersherum: Findest du 2 Folgen, die beide gegen Null gehen (bzw beide gegen die gleiche Zahl, hier bieten sich aber Nullfolgen an!), aber die dazugehören Folgen von Funktionswerten [mm] $f(x_n)$ [/mm] gegen 2 unterschiedliche Zahlen konvergieren, dann muss die Funktion unstetig in [mm] $x_0$ [/mm] sein.

Das solltest du dir, falls es dir noch nicht klar ist, klar machen (Prinzip der Kontrapunktion - Klingt jetzt sehr hochtrabend, isses aber absolut nicht!).

Zur b). Die Teilaufgabe b soll ich dich ein wenig in die richtige Richtung für die Teilaufgabe a) rücken. Setzte die Folge einfach ma ein, und bedenke, dass der Sinus [mm] $2\pi$-periodisch [/mm] ist!

lg Kai

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]