matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFunktionen mehrerer Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktionen mehrerer Variablen
Funktionen mehrerer Variablen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mehrerer Variablen: Partielle Elastizitäten
Status: (Frage) beantwortet Status 
Datum: 23:37 Mo 07.03.2011
Autor: blackkilla

Hallo Leute

Hier die Aufgabenstellung:

Gegeben sei [mm] z=x_{1}^p....x_{n}^pexp(a_{1}x_{1}+....+a_{n}x_{n}), [/mm] wobei [mm] a_{1},......,a_{n} [/mm] und p Konstanten sind. Bestimmen Sie die paritellen Elastizitäten von z bezüglich [mm] x_{1},.....,x_{n}. [/mm]

Die Lösung wäre [mm] El_{i}z= p+a_{i}x_{i} [/mm] für i = 1,....,n

In der Aufgabenstellung verwirrt mich vor allem das exp. Könnt mir da helfen, wie ich da vorgehen muss?


Lieber Gruss



        
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Di 08.03.2011
Autor: QCO

Also die partielle Elastizität einer Funktion [mm]f = f(x_1, x_2, ...)[/mm] ist definiert als als [mm]\varepsilon_{f,i} = \bruch{\partial f(x_1, x_2, ...)}{\partial x_i} * \bruch{x_i}{f(x_1, x_2, ...)}[/mm].

Mit [mm]exp(a_1 x_1 + a_2 x_2 + ...)[/mm] ist [mm]e^{a_1 x_1 + a_2 x_2 + ...}[/mm] gemeint - das ist eine gängige Schreibweise der Exponentialfunktion.
Du musst also eine entsprechende partielle Ableitung [mm]\bruch{\partial f}{\partial x_i}[/mm] bilden, d.h. die Funktion [mm]f[/mm] einfach so ableiten, als wären alle Variablen außer [mm]x_i[/mm] Konstanten.


Bezug
                
Bezug
Funktionen mehrerer Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 09.03.2011
Autor: blackkilla

Man kann die Formel ja auch anders schreiben:

[mm] \bruch{\partial lnz}{\partial lnx_i} [/mm]

Ich hab jetzt auf beiden Seiten den Log gebildet:

[mm] lnz=p*lnx_1....+lne^{a_1x_1....} [/mm]

Stimmt das? Und wie weiter? Was ist [mm] \partial lnx_i? [/mm]

Bezug
                        
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mi 09.03.2011
Autor: fred97


> Man kann die Formel ja auch anders schreiben:
>  
> [mm]\bruch{\partial lnz}{\partial lnx_i}[/mm]

Was machst Du hier ? Und wozu ?


QCO  hats doch gesagt:  

$ [mm] \varepsilon_{f,i} [/mm] = [mm] \bruch{\partial f(x_1, x_2, ...)}{\partial x_i} \cdot{} \bruch{x_i}{f(x_1, x_2, ...)} [/mm] $.

Rechne es doch einfach aus und Du wirst sehen, es kommt heraus:

                       [mm] $p+a_ix_i$ [/mm]


FRED

>  
> Ich hab jetzt auf beiden Seiten den Log gebildet:
>  
> [mm]lnz=p*lnx_1....+lne^{a_1x_1....}[/mm]
>  
> Stimmt das? Und wie weiter? Was ist [mm]\partial lnx_i?[/mm]  


Bezug
                                
Bezug
Funktionen mehrerer Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 Do 10.03.2011
Autor: blackkilla

Ok ich habe es mal abgeleitet:

[mm] px_i^{p-1}*a_ie^{a_ix_i} [/mm]

Das ist jetzt nur [mm] \bruch{\partialf}{\partialx_i} [/mm] abgeleitet und mit f dividiert (aus dem anderen Faktor [mm] \bruch{x_i}{f} [/mm]

Bezug
                                        
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:56 Fr 11.03.2011
Autor: Fulla

Hallo blackkilla,


> Ok ich habe es mal abgeleitet:
>  
> [mm]px_i^{p-1}*a_ie^{a_ix_i}[/mm]
>  
> Das ist jetzt nur [mm]\bruch{\partial f}{\partial x_i}[/mm] abgeleitet
> und mit f dividiert (aus dem anderen Faktor [mm]\bruch{x_i}{f}[/mm]  

Nein, ist es nicht. Rechne deine Ableitung doch mal hier vor. Ich fürchte, du hast u.a. die Prokuktregel falsch/nicht angewandt...


Lieben Gruß,
Fulla


Bezug
        
Bezug
Funktionen mehrerer Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Do 31.03.2011
Autor: blackkilla

Ok dann leit ich mal z nach [mm] x_i [/mm] ab:

Das gibt bei mir [mm] px_i^{p-1}a_ix_ie^{a_ix_i-1} [/mm]

Stimmt das? Und wie weiter?

Bezug
                
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Do 31.03.2011
Autor: ullim

Hi,

also Du hast

[mm] f(x_1,...,x_n)=\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}} [/mm]

Die Elastizität berechnet sich nach QCO durch

[mm] \epsilon_{f,i}=\bruch{\partial f(x_1, x_2, ...)}{\partial x_i} \cdot{} \bruch{x_i}{f(x_1, x_2, ...)} [/mm]

D.h.

[mm] \bruch{\partial f(x_1, x_2, ...)}{\partial x_i}=\bruch{p\produkt_{i=1}^{n}x_i^p}{x_i}*e^{\summe_{i=1}^{n}\alpha_i{x_i}}+\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}}\alpha_i [/mm]

also

[mm] \epsilon_{f,i}=\left(\bruch{p\produkt_{i=1}^{n}x_i^p}{x_i}*e^{\summe_{i=1}^{n}\alpha_i{x_i}}+\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}}\alpha_i\right)*\bruch{x_i}{\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}}} [/mm]

ausklammern ergibt

[mm] \epsilon_{f,i}=\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}}\left(\bruch{p}{x_i}+\alpha_i\right)\bruch{x_i}{\produkt_{i=1}^{n}x_i^p*e^{\summe_{i=1}^{n}\alpha_i{x_i}}}=p+\alpha_i{x_i} [/mm]

Bezug
                        
Bezug
Funktionen mehrerer Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 01.04.2011
Autor: blackkilla

Hey vielen vielen Dank. Jetzt seh ichs. Doch leider habe ich noch ein paar Fragen:

Was ist der Unterschied zwischen diesem komischen pi-Zeichen und dem E-Zeichen? Warum i=1?

Bezug
                                
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 Fr 01.04.2011
Autor: Fulla

Hallo blackkilla,

[mm]\prod[/mm] ist ein ein großes Pi und steht für "Produkt", [mm]\sum[/mm] ist ein großes Sigma und steht für "Summe".
Beide Zeichen haben einen Laufindex - oft [mm]i[/mm] genannt - und es gilt:
[mm]\prod_{i=1}^{n} a_i=a_1*a_2*a_3*\ldots *a_{n-1}*a_n[/mm]

[mm]\sum_{i=1}^n a_i=a_1+a_2*a_3+\ldots +a_{n-1}+a_n[/mm]

Das sind also nur abkürzende Schreibweisen. In deiner ursprünglichen Aufgabenstellung steht ja [mm]z=x_{1}^p....x_{n}^p exp(a_{1}x_{1}+....+a_{n}x_{n})[/mm] und wie ullim schon geschrieben hat, kannst du das auch schreiben als
[mm]z=\prod_{i=1}^n x_i^p *\exp\left(\sum_{k=1}^n a_kx_k\right)[/mm].

Zu beachten ist allerdings, dass ullims Version (beide Laufindizes heißen $i$) etwas missverständlich ist: man könnte meinen, dass sich das Produkt auch auf die i-Indizes in der Exponentialfunktion bezieht. Das kannst du durch Setzen von Klammern oder durch Umbenennen der Indizes (wie ich es hier gemacht habe) beheben.


Lieben Gruß,
Fulla



Bezug
                                        
Bezug
Funktionen mehrerer Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 So 03.04.2011
Autor: blackkilla

Was ist wenn ich i=2 setze?

Bezug
                                                
Bezug
Funktionen mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 03.04.2011
Autor: leduart

Hallo
i ist ein "Laufindex" der nacheinender die werte 1,2,.. bis n annimmt, das kannst du nicht setzen.
wenn dir die summen und Produktzeichen nicht vertraut sind, lass sie weg und schreib statt [mm]\produkt_{i=1}^{n}x_i^p\textrm{ einfach } x_1^p*x^2^p...*x_n^p usw. [/mm].
Gruss leduart


Bezug
                                                        
Bezug
Funktionen mehrerer Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 So 03.04.2011
Autor: blackkilla

Ok vielen Dank an alle, die mir hier wertvolle Tipps und Erklärungen gegeben haben!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]