matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungFunktionenschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Funktionenschar
Funktionenschar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 07.10.2007
Autor: tha_specializt

Aufgabe
Für jedes reelle t ist die Funktion f gegeben durch [mm] {f_{t}(x)=x^{4}-(2-t)x^{3}-2tx^{2}; x \in \IR}. [/mm]
[mm] g_{t} [/mm] ist die Tangente an das Schaubild [mm] K_{t} [/mm] von [mm] f_{t} [/mm] in x=1.
Zeigen Sie: Die Geraden [mm] g_{t} [/mm] verlaufen durch einen gemeinsamen Punkt.

Ich muss zugeben, dass das eine Hausaufgabe ist aber es wäre nicht schlimm diesen einen Teil der HA auszulassen, ich frage also rein interessenhalber. Hätte jemand Lust mir diese Aufgabe zu erklären?
Ich dachte daran, die Diskriminante zu ermitteln und dann aufgrund derer Wertigkeit zu argumentieren, ist das ein korrekter Ansatz?

        
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 So 07.10.2007
Autor: Ernie

Hey, Deine Grade und Deine Funktion laufen doch genau dann durch einen gemeinsamen Punkt, wenn Dieser unabhängig vom Parameter t steht. Zeige dies!!!

LG


Bezug
        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 07.10.2007
Autor: Teufel

Hi!

Erstmal musst du [mm] g_t [/mm] bestimmen.

[mm] g_t: y=f_t'(1)(x-1)+f_t(1) [/mm] (Punkt-Steigungs-Form)

[mm] g_t: [/mm] y=(-t-2)(x-1)-t-1
         =-(t+2)x-1

Nun, an der Gleichung kannst du sehen, dass alle Tangenten [mm] g_t [/mm] den selben y-Achsenabschnitt haben, der immer n=-1 ist.

Also sollten sich alle Tangenten im Punkt P(0|-1) schneiden!


Bezug
                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 So 07.10.2007
Autor: tha_specializt

sehr gut, danke.

Bezug
                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 So 07.10.2007
Autor: MontBlanc

Hi,

das ganze könntest du verifizieren, indem du t durch eine andere variable ersetzt, und sie mit der ursprünglichen Tangentengleichung gleichsetzt:

-(t+2)x-1=-(s+2)*x-1

lg,

exeqter

Bezug
                        
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 So 07.10.2007
Autor: Teufel

Hi!

Könnte man... aber in dem Fall kann man es sein lassen.

Bezug
                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 So 07.10.2007
Autor: tha_specializt


> Hi!
>  
> Erstmal musst du [mm]g_t[/mm] bestimmen.
>  
> [mm]g_t: y=f_t'(1)(x-1)+f_t(1)[/mm] (Punkt-Steigungs-Form)
>  
> [mm]g_t:[/mm] y=(-t-2)(x-1)-t-1
>           =-(t+2)x-1
>  
> Nun, an der Gleichung kannst du sehen, dass alle Tangenten
> [mm]g_t[/mm] den selben y-Achsenabschnitt haben, der immer n=-1
> ist.
>  
> Also sollten sich alle Tangenten im Punkt P(0|-1)
> schneiden!
>  

Sehe ich das richtig, wenn ich sage dass sowohl y-Achsenabschnitt als auch die Steigung von [mm] g_{t} [/mm]  Funktionen sind?

Habe ich es so richtig weitergeführt? -->

y=-2x-1

(-2x-1)=1+b

b=-2x-2

[mm] g_{t}=(-2x-1)x+(-2x-2) [/mm]

Bezug
                        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 07.10.2007
Autor: Teufel

Nunja, du hast schon recht damit, aber ich weiß nicht, was du damit bezweckst.

m(t)=-(t+2)=-t-2
n(t)=1

Aber ich weiß nicht, was du damit vorhast!

Bezug
                                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 So 07.10.2007
Autor: tha_specializt

ja .. ich war eben verwirrt, der gestrige Tag bekam mir nicht sehr o.0

Bezug
                                        
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 So 07.10.2007
Autor: Teufel

Achso... also hat sich das erledigt?

Bezug
                                                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 So 07.10.2007
Autor: tha_specializt


> Achso... also hat sich das erledigt?

rischdsch.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]