matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesFunktionenschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Funktionenschar
Funktionenschar < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Mi 07.01.2009
Autor: kilchi

Aufgabe
Gegeben ist die Funktionenschar [mm] f_{a} [/mm] (a>0) :

[mm] f_{a}(x) [/mm] = [mm] -\bruch{x^4}{a2}+ x^2 [/mm] + [mm] \bruch{3a}{2} [/mm]  für x [mm] \in \IR [/mm]

a)Gibt es Eigenschaften, die für alle Funktionen der Schar gelten? Begründen Sie Ihre Antwort.

b)Für welchen Wert von a hat die Ableitung [mm] f_{'a} [/mm] genau drei Nullstellen [mm] x_1 [/mm] = 0, [mm] x_2 [/mm] =1 und [mm] x_3 [/mm] = -1?

c) Bestimmen Sie alle Extrema von [mm] f_1 [/mm]

Guten Abend

Ich habe hier so meine Schwierigkeiten und wäre deshalb dankbar, wenn sich jemand die Zeit nimmt, mir zu helfen!
Einige Ideen habe ich, evtl. korrigieren oder ergänzen.

Jetzt schon ein grosses Dankeschön für eure Antworten!!!

Mit freundlichem Gruss

Kilchi

a) Ich nehme an, das alle Funktionen gerade sind, da man auf den Summand mit dem grössten Exponent schauen muss, der ist 4 also immer gerade.

Gibt es weitere Eigenschaften???

b) ??? Wie komme ich auf diese Lösung?

c) Muss ich hier die Ableitung nehmen?

[mm] f_{'a}(x) [/mm] = - [mm] \bruch{2x^{3}}{a}+2x=0 [/mm]

doch dann????

        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 07.01.2009
Autor: MathePower

Hallo kilchi,

> Gegeben ist die Funktionenschar [mm]f_{a}[/mm] (a>0) :
>  
> [mm]f_{a}(x)[/mm] = [mm]-\bruch{x^4}{a2}+ x^2[/mm] + [mm]\bruch{3a}{2}[/mm]  für x [mm]\in \IR[/mm]
>  
> a)Gibt es Eigenschaften, die für alle Funktionen der Schar
> gelten? Begründen Sie Ihre Antwort.
>  
> b)Für welchen Wert von a hat die Ableitung [mm]f_{'a}[/mm] genau
> drei Nullstellen [mm]x_1[/mm] = 0, [mm]x_2[/mm] =1 und [mm]x_3[/mm] = -1?
>  
> c) Bestimmen Sie alle Extrema von [mm]f_1[/mm]
>  Guten Abend
>  
> Ich habe hier so meine Schwierigkeiten und wäre deshalb
> dankbar, wenn sich jemand die Zeit nimmt, mir zu helfen!
>  Einige Ideen habe ich, evtl. korrigieren oder ergänzen.
>  
> Jetzt schon ein grosses Dankeschön für eure Antworten!!!
>  
> Mit freundlichem Gruss
>  
> Kilchi
>  
> a) Ich nehme an, das alle Funktionen gerade sind, da man
> auf den Summand mit dem grössten Exponent schauen muss, der
> ist 4 also immer gerade.
>  
> Gibt es weitere Eigenschaften???


Wenn die Funktion gerade ist, was ist sie dann?


>  
> b) ??? Wie komme ich auf diese Lösung?


Setze

[mm]f_{a}'\left(x\right)=\alpha*x*\left(x-1\right)*\left(x+1\right)[/mm]

und vergleiche dann Koeffizienten vor dem gleichen Exponenten.


>  
> c) Muss ich hier die Ableitung nehmen?
>  
> [mm]f_{'a}(x)[/mm] = - [mm]\bruch{2x^{3}}{a}+2x=0[/mm]
>  
> doch dann????


Nach x auflösen und mit Hilfe der zweiten Ableitung prüfen,
welcher Art das Extrema ist.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]