matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikFunktionenverkettung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - Funktionenverkettung
Funktionenverkettung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenverkettung: Beweis von Eigenschaften
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 20.02.2006
Autor: dump_0

Hallo Gemeinde !

In einer Wiederholung bin ich auf eine Aufgabe gestoßen, wo ich leider keinen Ansatz finde. Es sind verschiede Teilaufgaben, jedoch bräuchte ich nur die Beweisidee bzw. den Ansatz :)

Also:

Zeigen Sie, dass wenn

a) [tex]f \circ g[/tex] injektiv ist, auch [tex]f[/tex] injektiv ist.

Mfg
[mm] dump_0 [/mm]

        
Bezug
Funktionenverkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:18 Di 21.02.2006
Autor: mathiash

Hallo und guten Morgen,

also sei  [mm] f\circ [/mm] g injektiv. Problem nun: Ich bin mir bei der von Dir benutzten Notation nicht sicher, wie herum sie zu lesen ist
(das machen leider nicht alle einheitlich, auch in der Literatur nicht).

Deswegen fuer beide Faelle:

(1) Falls [mm] f\colon X\to [/mm] Y, [mm] \:\: g\colon Y\to [/mm] Z und die Verkettung injektiv ist, so muss
f injetiv sein. Denn gäbe es [mm] x_1\neq x_2,\: x_1,x_2\in [/mm] X mit [mm] f(x_1)=f(x_2), [/mm] so wäre ja auch

[mm] g(f(x_1))=g(f(x_2)) [/mm]   und somit ein Widerspruch zur Injektivität der Verkettung der beiden Funktionen.

(2) Falls [mm] g\colon X\to Y,\: f\colon Y\to [/mm] Z und die Verkettung injektiv ist, so folgt, dass f eingeschränkt
auf das Bild von X unter g injektiv sein muss:

[mm] f|im(g)\: \colon\: im(g)\to [/mm] Z [mm] \:\: [/mm]   injektiv.

Dabei ist natürlich    

[mm] im(g)=\{g(x)\: |\: x\in X\}\: =\: \{y\in Y\: |\: \exists x\in X\: [\: f(x)=y\: ]\:\} [/mm]

Denn sonst gäbe es [mm] y__1=g(x_1),y+2=g(x_2)\in [/mm] im(g) mit [mm] y_1\neq y_2 [/mm] und [mm] f(y_1)=f(y_2), [/mm] was dann wieder
der Injektivitaet der Verkettung widersprechen wuerde.



Alles klar soweit ?

Viele Gruesse,

Mathias

Bezug
                
Bezug
Funktionenverkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Di 21.02.2006
Autor: dump_0

Alles klar !
Danke für deine Hilfe, jetzt sollte der Rest kein Problem mehr sein :)

Grüße
[mm] dump_0 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 15m 3. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 22h 03m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 1d 20h 46m 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 2d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 2d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]