Funktionsherleitung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:19 So 17.02.2008 | Autor: | Phil90 |
Aufgabe | An den Punkt P(4/2) soll eine Gerade so gelegt werden, dass das mit dem Koordinatenachsen gebildete Dreieck den kleinstmöglichen Flächeninhalt hat! Wie heißt die Gleichung der Geraden und wie groß ist der Flächeninhalt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. |
Bitte helft mir! Ich kriege es einfach nicht hin!!! Diese Aufgabe haben wir über die Ferien aufbekommen und ich habe es einfach in den 2 Wochen nicht geschafft die richtige Lösung zu finden!
|
|
|
|
Du musst wahrscheinlich mit einer Unbekannten arbeiten (Mein Vorschlag: Die Steigung der Geraden in dem Punkt = m). Das m ist mindestens [mm] -\infty [/mm] (dann ist es eine Gerade nach oben) und höchstens 0 (Dann ist es eine horizontale Gerade)
Wie lautet die Gleichung der Geraden, wenn sie durch P(4|2) geht und die Steigung m hat?
Wir wissen: Die Gerade muss durch den Punkt P(4|2) gehen, das heißt wenn ich 4 einsetze muss 2 rauskommen. Wir setzen das in die typische Geradengleichung ein:
y = m*x+n
2 = m*4+n
--> 2-m*4 = n
--> Gesamte Geradengleichung in Abhängigkeit von m:
y = m*x + (2 - 4*m)
Aha!
Nun müssen wir und auf den Flächeninhalt des Dreiecks konzentrieren. Was ist die Höhe des Dreiecks? Das ist dort, wo die Gerade die Y-Achse schneidet: Der y-Achsenabschnitt. Was ist die Breite des Dreiecks: Die Nullstelle der Geraden.
Wir müssen nun sowohl Breite als auch Höhe mit m ausdrücken:
Bei der allgemeinen Geradengleichung, die wir oben in Abhängigkeit von m berechnet haben, wäre n dann der Schnittpunkt mit der y-Achse, d.h. wir haben schon mal die Höhe des entstehenden Dreiecks. Die Breite erhalten wir, wenn wir den x-Achsen-Abschnitt (Nullstelle) der Gerade herausbekommen.
Setze also Geradengleichung = 0.
0 = m*x + (2-4*m)
-2 = m*x -4*m
4*m - 2 = m*x
4 - [mm] \bruch{2}{m} [/mm] = x
D.h. die Breite des Dreiecks ist dann (4 - [mm] \bruch{2}{m}). [/mm] Die Allgemeine Flächenformel für ein Dreieck lautet: A = [mm] \bruch{Breite*Hoehe}{2}, [/mm] hier also:
A = (4 - [mm] \bruch{2}{m})*(2-4*m)
[/mm]
Wir haben nun also eine Formel für den Flächeninhalt des Dreiecks in Abhängigkeit von m.
Diese Funktion musst du nun ableiten; Setze die Ableitung = 0 um Extremstellen herauszufinden (im Intervall [mm] [-\infty,0]). [/mm] Ein Minimum von A an einer bestimmten Stelle m bedeutet, dass der Flächeninhalt an dieser Stelle m minimal wird.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:55 So 17.02.2008 | Autor: | Phil90 |
Wow danke dir!!! Den Ansatz mit m hatte ich ebenfalls in Angriff genommen, jedoch hast du meine Lücke gefüllt! Die Sache mit dem x ist echt gut!
Aber eine Frage hab ich noch...bei der Formel für A, die du dann hingeschriben hast muss ich doch trotzdem alles durch 2 teilen oder??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:57 So 17.02.2008 | Autor: | M.Rex |
> Wow danke dir!!! Den Ansatz mit m hatte ich ebenfalls in
> Angriff genommen, jedoch hast du meine Lücke gefüllt! Die
> Sache mit dem x ist echt gut!
>
> Aber eine Frage hab ich noch...bei der Formel für A, die du
> dann hingeschriben hast muss ich doch trotzdem alles durch
> 2 teilen oder??
Hallo
Yep, musst du.
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:24 So 17.02.2008 | Autor: | Phil90 |
jetzt bin ich ja mal gespannt...m=-9,5...ist das richtig???
|
|
|
|
|
Nein, ich glaube nicht...
f(x) = [mm] \bruch{1}{2}*(4-\bruch{2}{x})*(2-4*x)
[/mm]
= [mm] (2-\bruch{1}{x})*(2-4*x)
[/mm]
= 4 - 8*x - [mm] \bruch{2}{x} [/mm] + 4
= 8 - 8*x - [mm] \bruch{2}{x}
[/mm]
Nun ableiten:
f'(x) = -8 + [mm] \bruch{2}{x^{2}}
[/mm]
Extremstellen:
0 = -8 + [mm] \bruch{2}{x^{2}}
[/mm]
[mm] \gdw [/mm] 8 = [mm] \bruch{2}{x^{2}}
[/mm]
[mm] \gdw [/mm] 4 = [mm] \bruch{1}{x^{2}}
[/mm]
[mm] \gdw 4*x^2 [/mm] = 1
[mm] \gdw x_{1} [/mm] = [mm] -\bruch{1}{2}, x_{2} [/mm] = [mm] \bruch{1}{2}
[/mm]
Da x [mm] \in (\infty,0) [/mm] sein soll, kommt nur [mm] x_{1} [/mm] in Frage.
Was hast du anders gemacht ?
|
|
|
|