matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Funktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Funktionsschar
Funktionsschar < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Sa 12.01.2008
Autor: JulGe

Aufgabe
Gegeben ist die Funktionsschar [mm] f_{t} [/mm] mit [mm] f_{t}(x)=tx^{3}-3(t+1)x [/mm]

Weise rechnerisch nach, dass alle Schaubilder [mm] f_{t} [/mm] durch einen gemeinsamen Punkt P gehen. Gib diesen Punkt an.



Guten Morgen,

kann man diese Aufgabe lösen, indem man z.B. für t erstmal 1 einsetzt und dann 2, dann 3 und die ersten beiden Funktionen dann gleichsetzt und damit dann den Schnittpunkt angibt. Danach dann die Funktion für t=3 mit einer der beiden ersten gleichsetzen. Wäre das der rechnerische Nachweis?

Gruss
Julian

        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Sa 12.01.2008
Autor: schachuzipus

Hallo JulGe,

der rechnerische Nachweis verläuft eigentlich genau wie deine Idee mit den konkreten Zahlenwerten, nur dass du zwei allgemeine, aber verschiedene Parameter [mm] $t_1$ [/mm] und [mm] $t_2$ ($t_1\neq t_2$) [/mm] hernimmst und dann [mm] $f_{t_1}(x)=f_{t_2}(x)$ [/mm] gleichsetzt.

Also [mm] $t_1x^3-3(t_1+1)x=t_2x^3-3(t_2+1)x$ [/mm]

Das löse mal nach $x$ auf, dann bekommst du den/die x-Wert/e des/der Schnittpunkt/e heraus.

Die kannst du dann nachher einfach in eine der Funktionsvorschriften einsetzen und den/die y-Wert/e berechnen.

Bedenke, dass mit [mm] $t_1\neq t_2$ [/mm] gilt: [mm] $t_1-t_2\neq [/mm] 0$ !!

Gruß

schachuzipus

Bezug
                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 12.01.2008
Autor: JulGe

Vielen Dank erstmal für die Antwort.

Ich kann aber die Gleichung irgendwie nicht nach x auflösen. Muss man das vielleicht mit Polynomdivision machen? Da weiß ich aber auch nicht, wie ich vorgehen soll. Was ich gemacht habe ist mal die Gleichung auf Null zu setzen. Mehr ging aber nicht.

[mm] t_{1}x^3-t_{2}x^3-3t_{1}x+3t_{2}x=0 [/mm]

Könnt ihr mir da bitte nochmal helfen.

Danke
Julian

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 12.01.2008
Autor: MontBlanc

Hallo,

> Vielen Dank erstmal für die Antwort.
>  
> Ich kann aber die Gleichung irgendwie nicht nach x
> auflösen. Muss man das vielleicht mit Polynomdivision
> machen? Da weiß ich aber auch nicht, wie ich vorgehen soll.
> Was ich gemacht habe ist mal die Gleichung auf Null zu
> setzen. Mehr ging aber nicht.
>  
> [mm]t_{1}x^3-t_{2}x^3-3t_{1}x+3t_{2}x=0[/mm]

Was haben denn alle Summanden gemeinsam? Genau, ein x. Das kannst du also ausklammern und hast dann auch schon die erste Lösung.

[mm] x*(t_{1}*x^2-t_{2}*x^2-3t_{1}+3t_{2})=0 [/mm]

usw. hilft dir das erstmal weiter ?



> Könnt ihr mir da bitte nochmal helfen.
>  
> Danke

Liebe Grüße,

exeqter

>  Julian


Bezug
                                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Sa 12.01.2008
Autor: JulGe

Da könnte ich doch jetzt, den Satz vom Nullprodukt anwenden. Damit wäre die erste Lösung 0 und die nächste Lösungen müsste man jetzt mit der Mitternachtsformel oder Polynomdivison bestimmen können. Wie das geht weis ich aber wegen den verschiedenen ts nicht. Da ich mir die Funktionsschar schon mal geplottet habe weis ich, dass alle durch den Punkt (0/0) gehen aber ich will trotzdem noch wissen wies weiter geht.

Bezug
                                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 12.01.2008
Autor: Kulli1

Ja Richtig die erste Lösung ist schonmal x=0, wenn du 0 in deine Ausgangsgleichung einsetzt erhälst du

f(0) = 0, also ist der erste gesucht Punkt (0/0) - es gibt aber noch 2 weitere, die du mit der Mitternachtformel oder einfach durch ziehen einer Wurzel herrausfinden kannst .
Durch ausklammern von x erhälst du nämlich:

[mm] x²(t_{1} -t_{2}) -3(t_{1} -t_{2}) [/mm] = 0
[mm] x²(t_{1} -t_{2}) [/mm] = [mm] 3(t_{1} -t_{2}) [/mm] | : [mm] (t_{1} -t_{2}) [/mm]
x² = 3
x= [mm] \pm \wurzel(3) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]