matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionsstreckung (Andere Lö)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Funktionsstreckung (Andere Lö)
Funktionsstreckung (Andere Lö) < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsstreckung (Andere Lö): Alternativer Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 20:29 Sa 30.03.2013
Autor: junior_lawyher

Aufgabe
Gegeben ist die Funktion h mit [mm] h(x)=x^5-4x^4+6x^3-4x^2+x. [/mm]

Bestimmen Sie a so, dass das Schaubild mit der Gleichung y=a*h(x) die Gerade mit der Gleichung [mm] y=2^8 [/mm] berührt.

Zu der vorgegebenen Aufgabe habe ich folgende Lösung:

"Streckt man h so, dass der Hochpunkt den y-Wert [mm] 2^8 [/mm] bekommt, so berührt das neue Schaubild die Gerade mit der Gleichung [mm] y=2^8. [/mm] Laut grafischen Taschenrechner hat der Hochpunkt den y-Wert 0,08192. Daraus ergibt sich der Faktor [mm] 2^8/0,08192=3125." [/mm]

Dieser Lösungsweg ist mir nachvollziehbar. Allerdings bin ich auf Idee gekommen, einfach den neuen Hochpunkt H(0,08192 ; [mm] 2^8)einzusetzen. [/mm]

Also:
[mm] 2^8=x(0,08192^5-4*0,08192^4+6*0,08192^3-4*0,08192^2+0,08192 [/mm]

Dieser Weg führt nicht zum Ziel bzw. es kommt für x etwas mit fünzzehntausend irgendwas raus.

WESHALB haut meine Lösungsidee nicht hin ?






--------------------------------------------------------------------------------------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsstreckung (Andere Lö): Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Sa 30.03.2013
Autor: abakus


> Gegeben ist die Funktion h mit [mm]h(x)=x^5-4x^4+6x^3-4x^2+x.[/mm]

>

> Bestimmen Sie a so, dass das Schaubild mit der Gleichung
> y=a*h(x) die Gerade mit der Gleichung [mm]y=2^8[/mm] berührt.
> Zu der vorgegebenen Aufgabe habe ich folgende Lösung:

>

> "Streckt man h so, dass der Hochpunkt den y-Wert [mm]2^8[/mm]
> bekommt, so berührt das neue Schaubild die Gerade mit der
> Gleichung [mm]y=2^8.[/mm] Laut grafischen Taschenrechner hat der
> Hochpunkt den y-Wert 0,08192. Daraus ergibt sich der Faktor
> [mm]2^8/0,08192=3125."[/mm]

>

> Dieser Lösungsweg ist mir nachvollziehbar. Allerdings bin
> ich auf Idee gekommen, einfach den neuen Hochpunkt
> H(0,08192 ; [mm]2^8)einzusetzen.[/mm]

>

> Also:

>

> [mm]2^8=x(0,08192^5-4*0,08192^4+6*0,08192^3-4*0,08192^2+0,08192[/mm]

>
Hallo,
dein "x" soll sicherlich der gesuchte Faktor a sein.
In die Gleichung darfst du nicht die y-Koordinate (also 0,08192) des bisherigen Hochpunktes einsetzen. Du brauchst die x-Koordinate des Hochpunktes.
Gruß Abakus


> Dieser Weg führt nicht zum Ziel bzw. es kommt für x etwas
> mit fünzzehntausend irgendwas raus.

>

> WESHALB haut meine Lösungsidee nicht hin ?

>
>
>
>
>
>

> --------------------------------------------------------------------------------------------
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Funktionsstreckung (Andere Lö): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 So 31.03.2013
Autor: junior_lawyher

Vielen Dank für Antwort !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]