matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenFunktionsuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Fr 09.10.2009
Autor: matherein

Aufgabe
Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall.

Hallo an alle Forenmitglieder,

ich habe eine Frage zu den Extremstellen:

Notwendige Bedingung ist ja: 6 [mm] cos(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] (2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi. [/mm] Dann müsste doch [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0 [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=\pi. [/mm]
Im Buch steht aber: Im Intervall [mm] [0;\pi) [/mm] liegen also die Stellen [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2}. [/mm]

Was habe ich falsch gerechnet?

Danke im Voraus
matherein

        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Fr 09.10.2009
Autor: MathePower

Hallo matherein,

> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
>  Hallo an alle Forenmitglieder,
>  
> ich habe eine Frage zu den Extremstellen:
>
> Notwendige Bedingung ist ja: 6 [mm]cos(2x-\bruch{\pi}{2})=0[/mm] ist
> erfüllt für alle x [mm]\in \IR[/mm] mit
> [mm](2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi.[/mm] Dann müsste doch
> [mm]x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0[/mm] und
> [mm]x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2}[/mm]
> und [mm]x_{5}=\pi.[/mm]
>  Im Buch steht aber: Im Intervall [mm][0;\pi)[/mm] liegen also die
> Stellen [mm]x_{4}=0[/mm] und [mm]x_{5}=\bruch{\pi}{2}.[/mm]
>  
> Was habe ich falsch gerechnet?


Die Rechnung ist richtig.

Die Funktion [mm]3sin(2x-\bruch{\pi}{2})[/mm] ist [mm]\pi[/mm]-periodisch.
Damit beschränkt sich die Untersuchung auf ein Intervall der Länge [mm]\pi[/mm].


>  
> Danke im Voraus
>  matherein


Gruss
MathePower

Bezug
                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 10.10.2009
Autor: matherein

Hallo Mathepower,

sorry, ich habe mich wohl nicht klar genug ausgedrückt, denn um das Intervall geht es mir gar nicht. Meine Frage ist eher, welche x-Stellen nun richtig sind. Ist wie ich es ausgerechnet habe  [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0, [/mm] also [mm] x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi, [/mm] also [mm] x_{5}=\pi [/mm] oder ist wie im Buch steht [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] richtig?
Falls du meintest, dass die Rechnung aus dem Lösungsbuch die Richtige ist, wie ist dann der Rechenweg, um auf [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] zu kommen?




Bezug
                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 10.10.2009
Autor: steppenhahn

Hallo matherein,

du sollst die Funktion ja in einem geeigneten Intervall untersuchen. Die Funktion hat die Periode [mm] \pi, [/mm] und in deinem Buch wird nun davon ausgegangen, dass das Intervall [mm] [0,\pi) [/mm] dann das sinnvollste Intervall zum Untersuchen ist.

Genau wie du haben sie in dem Buch dann festgestellt, dass

[mm] $2x-\frac{\pi}{2} [/mm] = [mm] \frac{\pi}{2}+k*\pi$ [/mm]

für Extremstellen erfüllt sein muss, also

$x = [mm] \frac{(k+1)}{2}*\pi [/mm] = [mm] \frac{m}{2}*\pi\quad\quad \mbox{ mit } m\in\IZ$ [/mm]

D.h. ..., [mm] -\frac{\pi}{2},0,\frac{\pi}{2},\pi, \frac{3}{2}*\pi, [/mm] ...
all das sind Nullstellen von der Funktion. Und je nachdem, welches Intervall man jetzt wählt, sind entweder 0 und [mm] \frac{\pi}{2} [/mm] (wie im Buch) oder [mm] \frac{\pi}{2} [/mm] und [mm] \pi [/mm] (wie bei dir, wenn du als zu untersuchendes Intervall [mm] \left[\frac{\pi}{2},\frac{3}{2}*\pi\right] [/mm] ausgesucht hast) oder  ... als Extremstellen richtig.
Du musst eben nur klar am Anfang sagen, in welchem Intervall du arbeitest.

Grüße,
Stefan

Bezug
                                
Bezug
Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Di 13.10.2009
Autor: matherein

Hallo Stefan,

danke für die ausführliche Erklärung. Jetzt habe ich es denke ich einigermaßen verstanden!

Gruß
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]