matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationFunktionswert der Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - Funktionswert der Ableitung
Funktionswert der Ableitung < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionswert der Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:45 Mo 04.02.2019
Autor: Belserich

Aufgabe
Betrachten Sie die Funktion: [mm] $\frac{\sin^2{\frac{\sqrt{x^2 + x}}{\cos{x} - x}}}{\sin{\frac{\sqrt{x} - 1}{\sqrt{x^2 + 1}}}}$. [/mm] Berechnen Sie analytisch ${f}'(0.25)$.

Ich habe jetzt mehrere Male versucht nach den gelernten Regln zu differenzieren aber mich dabei jedes Mal verzettelt.

Meine Frage ist, ob es auch eine anderen Weg gibt, ${f}'(0.25)$ zu berechnen, ohne $f$ abzuleiten, oder einen Weg $f$ einfach abzuleiten. Ich habe schonmal mit Online-Ableitungsrechnern gegengeprüft, die verkomplizieren die Gleichung noch weiter. Ich habe auch Matlab einmal differenzieren lassen aber da sieht es genau so aus (also komplizierter als die Ausgangsgleichung). Ganz nebenbei darf ich Matlab auch gar nicht verwenden, da eine weitere Teilaufgabe ist die Gleichung numerisch zu differenzieren, heißt es wird wirklich eine Art Schritt für Schritt herangehensweise erwartet, das ganze nach den Regeln aus der Analysis zu differenzieren (oder nicht?).

Kann mir wer einen Ansatz zu einer besseren Vorgehensweise geben?

        
Bezug
Funktionswert der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 04.02.2019
Autor: leduart

Hallo
es gibt analytisch keinen anderen Weg, als sich da durchzuwurschteln. eine Hilfe ist, die einzelnen Ausdrücke zu separieren also etwa f(x)/g(x)   [mm] f(x)=sin^2(h(x) [/mm] und h(x)=a(x)/b(x) usw, dann die einzelnen Funktionen ableiten, Wert einsetzen und dann die Regeln auf die so zusammengesetzten Funktionen und ihren Ableitungen  anwenden.
wahrscheinlich soll das demonstrieren, dass man beim Programmieren solcher und ähnlicher Monster lieber numerisch differenziert.
Gruß leduart


Bezug
                
Bezug
Funktionswert der Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:12 Di 05.02.2019
Autor: Belserich

Also gut, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]