matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionswerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Funktionswerte
Funktionswerte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 16.03.2008
Autor: Markus110

Aufgabe
Geg. ist die Funktion f(x)= [mm] \bruch{1}{6} x(x-8)^2 [/mm]

Nullstellen, Extremwerte und Wendepunkt berechen.

Ermitteln sie alle Argumente x,
deren Funktionswert größer als das lokale Maximum der Funktion f(x) ist.

[winken] Hallo Zusammen!

Berechnet habe ich: [mm] N_1 [/mm] (0;0) ; [mm] N_2 [/mm] (8;0) ; Min (8;0) ; Max [mm] (\bruch{8}{3};12,64) [/mm] ; WP [mm] (\bruch{16}{3};6,32) [/mm]

Nun meine Frage: Wie stelle ich das mit den Argumenten x mathematisch dar?  Mir ist klar, das ab einer Stelle x die Funktionswerte für f(x) größer werden als 12,64 (Irgendwo ab der Stelle 10,...?). Aber wie beweise ich das?

Vielen Dank schonmal für Eure Mühen. LG Markus

        
Bezug
Funktionswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 16.03.2008
Autor: steppenhahn


> Geg. ist die Funktion f(x)= [mm]\bruch{1}{6} x(x-8)^2[/mm]
> Nullstellen, Extremwerte und Wendepunkt berechen.
>  
> Ermitteln sie alle Argumente x,
> deren Funktionswert größer als das lokale Maximum der
> Funktion f(x) ist.

> Berechnet habe ich: [mm]N_1[/mm] (0;0) ; [mm]N_2[/mm] (8;0)

Richtig. Es wäre eventuell noch anzugeben dass [mm] N_2 [/mm] eine doppelte Nullstelle ist.

> Min (8;0);

Richtig.

>Max [mm](\bruch{8}{3};12,64)[/mm] ;

Grundsätzlich richtig.
Es mag nicht so schön sein, aber um die zweite Teilaufgabe richtig lösen zu können solltest du den Funktionswert genau ausrechnen.
Es ist

[mm] f\left(\bruch{8}{3}\right) [/mm] = [mm] \bruch{1024}{81}. [/mm]

> WP [mm](\bruch{16}{3};6,32)[/mm]

Richtig.
Hier ebenfalls: [mm] f\left(\bruch{16}{3}\right) [/mm] = [mm] \bruch{512}{81} [/mm]

> Nun meine Frage: Wie stelle ich das mit den Argumenten x
> mathematisch dar?  Mir ist klar, das ab einer Stelle x die
> Funktionswerte für f(x) größer werden als 12,64 (Irgendwo
> ab der Stelle 10,...?). Aber wie beweise ich das?

Nun, du kennst den y-Wert deines lokalen Maximums:
[mm] \bruch{1024}{81} [/mm]

Was musst du nun rechnen:
Du überprüfst einfach, wann die Funktion gleich dem Funktionswert des Maximums wird:

f(x) = Max-y = [mm] \bruch{1024}{81}, [/mm] also wann

[mm] \bruch{1}{6} x(x-8)^2 [/mm] = [mm] \bruch{1024}{81} [/mm]

Ein Wert wird dein Maximum-x sein, der andere die Stelle ab der alle y-Werte größer sind als das Maximum-y. Ich denke, es ist erlaubt die Gleichung in den Taschenrechner einzugeben, denn rechnerisch wird da ziemlich kompliziert, denke ich.
Auch der Taschenrechner reicht aber und wird dir das Ergebnis

10.66666 = [mm] \bruch{32}{3} [/mm]

ausspucken :-)

Bezug
                
Bezug
Funktionswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 So 16.03.2008
Autor: Markus110

Aufgabe
Geg. ist die Funktion f(x)= [mm]\bruch{1}{6} x(x-8)^2[/mm]


Hi Stefan!

Danke Dir für Deine Antwort.
Leider darf ich nur einen Taschenrechner ohne Computer-Algebra-System verwenden und muss diesen Tern selbst ausrechen.

Wie geht das dann genau? Mein Lösungsansatz wäre:

Zuerst das Polynom Null setzen. Dazu [mm] \bruch{1024}{81} [/mm] abziehen und so nach links bringen.

Dann durch Polynomdivision eine Gleichung errechnen die ich dann mit der Mitternachtsformel ausrechnen kann. Oder gibts da was einfacheres? Gerade hier mit den Brüchen rechnet man sich ja zu Tode ;-)......

Das gleiche Problem habe ich eine Aufgabe später wieder. Da soll die Fläche zw. f(x) und der Gerade g: y= 2x+8 errechnet werden. Um da die Schnittpunkte zu bestimmen muss ich g(x)=f(x) setzen und habe auch wieder einen Term der mich vor große rechnerische Probleme stellt. Kennt vieleicht jemand einen einfacheren Weg? => Diese Aufgabe gebe ich gleich als seperate Frage ein....

LG Markus + Danke schonmal für Eure Mühe


Bezug
                        
Bezug
Funktionswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 So 16.03.2008
Autor: steppenhahn

Naja wie du schon bemerkt hast kommst du auf eine Funktion, die größeren Grades als [mm] x^{2} [/mm] ist. Dann hast du mehrere Möglichkeiten:

- 1. Wenn es eine Funktion aus nur ganzen Zahlen / Brüchen ist, dann sind die Lösungen eigentlich immer Teiler des letzten Gliedes ohne x.

- 2. Möglichst geschickt ausklammern / Und lösen :-)

- 3. Und darauf läuft es meistens hinaus: Eine Lösung "raten", z.B. mit dem Taschenrechner oder einem Graphen. --> Dann Polynomdivision und restliche Lösungen bestimmen.

Bei dir ist aber eine wichtige Information da: Eine Nullstelle ist [mm] \bruch{8}{3}, [/mm] der x-Wert des Maximums. Diese Lösung kannst du also schonmal mit Polynomdivision ausklammern und dann erhältst du eine quadratische Gleichung, die du lösen kannst. Die Brüche werden schon nicht so schlimm sein :-) (aber einen leichteren Weh kenne ich jetzt auch nicht)

Bezug
                                
Bezug
Funktionswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 16.03.2008
Autor: Markus110

Aufgabe
s.o.

Hat super geklappt das Polynom zu lösen

[mm] (\bruch{1}{6}x^3 -\bruch{8}{3}x^2 [/mm] + [mm] \bruch{26}{3}x [/mm] - [mm] \bruch{1024}{81}) [/mm] / [mm] (x-\bruch{8}{3}) [/mm] = [mm] \bruch{1}{6}x^2 [/mm] - [mm] \bruch{20}{9}x [/mm] - [mm] \bruch{128}{27} [/mm]

[mm] x_1= \bruch{32}{3} [/mm] ; [mm] x_2= \bruch{8}{3} [/mm]

Meine Frage ist nur, wie komme ich auf die Nullstelle [mm] (\bruch{8}{3}) [/mm] des Polynoms. Denn [mm] \bruch{8}{3} [/mm] ist doch die Nullstelle der ersten Ableitung. Kann man in dem Fall einfach den x-Wert des Maximums nehmen? Die Verbindung ist mir noch nicht ganz klar.

Danke + LG Markus

Bezug
                                        
Bezug
Funktionswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 So 16.03.2008
Autor: steppenhahn

Wir haben die allgemeine  Funktion genommen und sie mit dem y-Wert des Maximums gleichgesetzt. Wir wollen also alle x wissen, die, wenn ich sie in die Funktion einsetze, den Funktions-(y)-wert des Maximums ergeben.

Und wir wissen doch ein solches x! Welches x ergibt garantiert den Funktionswert des Maximums? Na der x-Wert des Maximums selbst, und der ist [mm] \bruch{8}{3}. [/mm]
Also wissen wir, das eine Lösung der Gleichung garantiert [mm] \bruch{8}{3} [/mm] sein wird! (und können Polynomdivision durchführen :-) )

Bezug
                                                
Bezug
Funktionswerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 So 16.03.2008
Autor: Markus110

Alles klar, jetzt hab ich es....Danke und schönen Abend noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]