matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Funktionswerte bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Funktionswerte bestimmen
Funktionswerte bestimmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionswerte bestimmen: Áufgabe
Status: (Frage) beantwortet Status 
Datum: 11:29 Fr 23.06.2006
Autor: Thorsten

Aufgabe 1
1. Bestimme die Funktionswerte ohne Taschenrechner

a) sin (150Grad)
b) cos(-150Grad)
c) cos [mm] (\bruch{ \pi}{4}) [/mm]
d) sin( [mm] \bruch{ \pi}{4}) [/mm]
e) tan ( [mm] \bruch{2}{3}\pi) [/mm]


Aufgabe 2
2. Bestimme die Lösungsmenge

a) cos(4x + 1) = -0,3
b) 6sin(x) + 2cos(x) = 2

Hallo,

ich brauche dringend Hilfe, bei diesen Aufgaben. Ich denke das man die Aufgaben 1. a) und b) mit Hilfe des Einheitskreis lösen kann.

Ab Aufgabe 1. c) usw. weis ich jedoch nicht weiter. Mir fehlt bei Aufgabe 2 jeglicher Ansatz.

Vielen Dank für euere Hilfe. Hab die Frage in keinem anderen Forum gestellt.

Gruß,
Thorsten


        
Bezug
Funktionswerte bestimmen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Fr 23.06.2006
Autor: Thorsten

Zu 1.

Habe bei Wikipedia die Reduktionsformel gefunden.Damit klappt es:

sin (150GRad) = sin (180Grad - 30 Grad)
-> sin (180Grad - 30 Grad) = sin (30Grad)
-> sin (30Grad) =  [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{1} [/mm]
->  [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{1} [/mm] = 0,5


Bezug
        
Bezug
Funktionswerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 23.06.2006
Autor: leduart

Hallo Thorsten
> 1. Bestimme die Funktionswerte ohne Taschenrechner
>  
> a) sin (150Grad)
> b) cos(-150Grad)
> c) cos [mm](\bruch{ \pi}{4})[/mm]
>  d) sin( [mm]\bruch{ \pi}{4})[/mm]
> e) tan ( [mm]\bruch{2}{3}\pi)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


sin, cos und tan von 30°, 45° ,60°  und 90° sollte man entweder auswendig wissen, oder schnell mit Pythagoras ausrechnen können. 30°=\pi/6  und 60°=\pi/3 hat man im gleichseitigen Dreieck, Seitenlänge1 und ingezeichneter Höhe. dann sieht man direkt sin30°=1/2, cos30°=1/2*\wurzel{3} wenn man die Höhe mit Pythagoras ausrechnet, und damit tan30°=1/\wurzel{3}=\wurzel{3}/3
bei 60° dasselbe haalbe Dreieck, sin und cos vertauschen die Rollen also cos60=1/2, sin60=1/2*\wurzel{3},  tan60=\wurzel{3}
bei 45° nimmt man ein gleichschenkliges rechtw. Dreieck mit Hypothenuse 1 und hat mit Pythagoras sin45=cos45=1/2*\wurzel{2} tan45=1
Die 2 hier genannten Dreiecke sollte man immer skizzieren, wenn die Winkel vorkommen.
Für Winkel größer 90 oder kleiner 0 ist es immer am besten das am Einheitskreis anzusehen. und dann auf einen der Werte oben zurückzuführen.
mit \pi entspricht 180° sollte man die anderen Werte in Grad umrechnen, (später ist man damit so vertraut, dass man das automatisch weiss. Also z. Bsp 2/3\pi entspricht 120° usw. damit kannst du jetzt die ganze Aufgabe 1.

>
> 2. Bestimme die Lösungsmenge
>  
> a) cos(4x + 1) = -0,3

Hier denkst du dir (4x + 1)=Y und hast cosY=-0,3, dann brauchst du den TR um arccos-0,3 auszurechnen . Dann hast du Y=\pm 107°,  \pm 107+n*360°  besser in rad rechnen
also Y=\pm 1,8..+n*2\pi  dann hast du 4x-1=Y setzest den Wert ein und rechnest x aus.

>  b) 6sin(x) + 2cos(x) = 2

Habt ihr die "Additionstheoreme" gehabt? also sin(x+y)=sinxcosy+cosxsiny
und dasselbe für cos(x+y) ?
Dann musst du die hier benutzen. weil cos^{2}a+sin^{2}a=1 ist, kann 6 und 2 nicht cos oder sin von irgendwas sein.
Ich muss die Gleichung erst noch ändern.
1. Schritt 6sin(x) + 2cos(x) = 2   daraus 3sin(x) + cos(x) = 1
2. Schritt ich dividiere die Gleichung durch \wurzel{3^{2}+1^{2}}=\wurzel{10}
und habe 3/\wurzel{10}sinx+1/\wurzel{10}*cosx=1/\wurzel{10}
jetzt kann ich setzen 3/\wurzel{10}=cosy   1/\wurzel{10}=siny
1/\wurzel{10}=sin(x+y)  und daraus y=0,32..  +n*2\pi,  x+y=0,32+m*2\pi
damit x=0, x =2\pi usw.
Bei dieser speziellen Gleichung  3sin(x) + cos(x) = 1 kannst du auch direkt sehen, dass sie für cosx=1 sinx=0 erfüllt ist.
Ich hab dir also nen Weg gezeigt, der allgemeiner ist.
Andere Möglichkeit: du weisst $sin^2 x+cos^2x=1$deshalb $cosx=\wurzel(1-sin^2x}$ das setzest du in deine Gleichung ein:
$ 3sin(x) + cos(x) = 1$  daraus $3sin(x)+ \wurzel(1-sin^2(x)}=1$
nenne sinx=z löse die Wurzelgleichung.
Gruss leduart
  

Bezug
        
Bezug
Funktionswerte bestimmen: Zu Aufgabe 2b
Status: (Antwort) fertig Status 
Datum: 09:46 Sa 24.06.2006
Autor: Karthagoras

Hallo Thorsten, Hallo Leduart,

2b kann man auch so lösen:

[mm] $6\sin [/mm] x+ [mm] 2\cos [/mm] x=2 [mm] \gdw$ [/mm]

[mm] $\gdw \begin{array}[h]{l} \overbrace{z\cos t}^{=6} *\sin x+ \overbrace{z\sin t}^{=2}*\cos x=2 \\ \frac26=\frac13=\frac{z\sin t}{z\cos t}=\tan t \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l}z\cos t*\sin x+z\sin t*\cos x=2 \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l}z*\sin \left(x+t\right)=2 \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l} \sin\left(x+t\right)=\frac2{z} \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \mbox{etc.}$ [/mm]

Gruß Karthagoras

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]