Furchtbarer Ito < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hallo ich habe folgende Problematik.
Nach einigen Rechnungen haben ich p(x,t) = [mm] a\varphi(t) \frac{x-a*\int_0^t \varphi(s)dB_s }{a^2*\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm]
dabei ist a ein konstanter Faktor, [mm] \varphi \in L^2(\mathbb{R}_+,ds) [/mm] und B ist meine Brownsche Bewegung |
müsste jetzt Ito anwenden, allerdings komme ich nicht weiter weil ich es nicht hinbekomme nach t zu differenzieren...
|
|
|
|
> Hallo ich habe folgende Problematik.
> Nach einigen Rechnungen haben ich p(x,s) = [mm]a\varphi(s) \frac{x-a*\int_0^t \varphi(s)dB_s }{a^2*\int_t^T \varphi^2(s)ds +(1-a)^2}[/mm]
> dabei ist a ein konstanter Faktor, [mm]\varphi \in L^2(\mathbb{R}_+,ds)[/mm]
> und B ist meine Brownsche Bewegung
>
> müsste jetzt Ito anwenden, allerdings komme ich nicht
> weiter weil ich es nicht hinbekomme nach t zu
> differenzieren...
Guten Tag !
ohne mich in dem Sachgebiet (Itô-Integral etc.) auszukennen:
es ist z.B.
[mm] $\frac{d}{dt}\left(\integral_t^T \varphi^2(s)ds\right)\ [/mm] =\ [mm] -\varphi^2(t)$
[/mm]
LG Al-Chw.
|
|
|
|
|
Hi,
danke. Das war leider weniger das Problem :(
Das Problem ist, dass ich, wenn ich es ausschreibe, auf dem Bruch folgendes habe:
[mm] a^2\varphi(t)\int_0^t \varphi(s) dB_s [/mm] und nicht weiß wie ich das nach t differenziere.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:20 Sa 18.08.2012 | Autor: | leduart |
Hallo
das ist doch einfach nur Produktregel?
Grusss leduart
|
|
|
|
|
Hiho,
wie leduart bereits schrieb, ist das "einfach" Produktregel für stochastische Prozesse und damit:
[mm] $d\left( a^2\varphi(t)\int_0^t \varphi(s) dB_s \right) [/mm] = [mm] a^2\varphi'(t)\left(\int_0^t \varphi(s) dB_s\right) [/mm] dt + [mm] a^2\varphi^2(t) dB_t$
[/mm]
MFG,
Gono.
|
|
|
|
|
Ok das hatte ich nun auch
und [mm] a\varphi(t) \frac{x-a\cdot{}\int_0^t \varphi(s)dB_s }{a^2\cdot{}\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm] nach [mm] B_t
[/mm]
differentiert ergibt dann
[mm] \frac{-a^2\varphi^2(t)dB_t}{a^2\cdot{}\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm] ?
|
|
|
|
|
Hiho,
> und ... nach [mm]B_t[/mm] differentiert ergibt dann
es gibt kein "nach t" oder "nach [mm] B_t" [/mm] differenzieren.
Du bildest die Ableitung eines Prozesses, das ist aber nur die Kurzschreibweise für eine Integraldarstellung mit Hilfe der Itô-Formel.
D.h. du differenzierst immer den gesamten Prozess.
Dafür nutzt dann eben entweder die Summenformel oder die Produktformel.
Differenziere nun also [mm] $a\varphi(t) \frac{x-a\cdot{}\int_0^t \varphi(s)dB_s }{a^2\cdot{}\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm] $ mit Hilfe der Produktformel oder schreibs erst um und dann Summenregel.
Wenn du nun wissen möchtest, ob dann:
$ [mm] \frac{-a^2\varphi^2(t)dB_t}{a^2\cdot{}\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm] $ als [mm] dB_t [/mm] - Term herauskommt, lautet die Antwort "ja".
MFG,
Gono.
|
|
|
|
|
ok also
d p(x,t) = d( [mm] a\varphi(t) \frac{x-a\cdot{}\int_0^t \varphi(s)dB_s }{a^2\int_t^T \varphi^2(s)ds +(1-a)^2} [/mm] )
[mm] =d\frac{a\varphi(t)x}{a^2\int_t^T \varphi^2(s)ds +(1-a)^2} -d\frac{a^2\cdot{}\varphi(t)\int_0^t \varphi(s)dB_s }{a^2\int_t^T \varphi^2(s)ds +(1-a)^2}
[/mm]
[mm] =\frac{a \varphi'(t) a^2\int_t^T \varphi^2(s)ds +(1-a)^2 + a^3 \varphi(t)^3 x}{[a^2\int_t^T \varphi^2(s)ds +(1-a)^2]^2} [/mm] dt
- [mm] \frac{[a^2 \varphi'(t) (\int_0^t\varphi(s)dB_s)dt+a^2 \varphi^2(t)dB_t](a^2\int_t^T \varphi^2(s)ds +(1-a)^2)-a^4\varphi(t)^3 \int_0^t \varphi(s) dB_s}{[a^2\int_t^T \varphi^2(s)ds +(1-a)^2]^2}
[/mm]
|
|
|
|
|
Hiho,
argh, da war ich wohl etwas vorschnell..... hab den Integranden vernachlässigt.... ob deins stimmt....
tjo, mal langsam nachrechnen. Dann siehst du auch gleich mal, wie man da "generell" vorgehen muss.
Wir haben:
[mm] $\bruch{a\varphi_tx - a^2\varphi_t\integral_0^t \varphi_s dB_s}{a^2\integral_t^T \varphi^2_s ds + (1-a)^2}$
[/mm]
Nun sei:
[mm] $X_t [/mm] = [mm] a\varphi_tx [/mm] - [mm] a^2\varphi_t\integral_0^t \varphi_s dB_s$
[/mm]
[mm] $Y_t [/mm] = [mm] a^2\integral_t^T \varphi^2_s [/mm] ds + [mm] (1-a)^2$
[/mm]
Zuerst berechnen wir [mm] $\bruch{1}{Y_t}$ [/mm] mit der Itô-Formel.
Zur Erinnerung: [mm] $f(X_t) [/mm] - [mm] f(X_0) [/mm] = [mm] \integral_0^t f'(X_s) dX_s [/mm] + [mm] \bruch{1}{2} f''(X_s) [/mm] d<X>_s$
[mm] $Z_t [/mm] = [mm] \bruch{1}{Y_t} [/mm] = [mm] \bruch{1}{Y_0} [/mm] - [mm] \integral_0^t \bruch{1}{Y_s^2} dY_s [/mm] + [mm] \integral_0^t \bruch{1}{Y_s^3} [/mm] d<Y>_s$
$= [mm] \bruch{1}{Y_0} [/mm] - [mm] \integral_0^t \bruch{1}{Y_t^2}a^2(-\varphi^2_s)ds [/mm] + 0$
[mm] $=Z_0 [/mm] + [mm] \integral_0^t \bruch{a^2\varphi^2_s}{Y_s^2} [/mm] ds$
Und damit:
[mm] $dZ_t [/mm] = [mm] \bruch{a^2\varphi^2_s}{Y_s^2} [/mm] ds$
Man hätte das auch gleich mit der Itô-Formel in Kurzschreibweise machen können, zur Erinnerung: [mm] $df(X_t) [/mm] = [mm] f'(X_t)dX_t [/mm] + [mm] f''(X_t)d_t$
[/mm]
Dann hätte man bekommen:
[mm] $dZ_t [/mm] = [mm] d\left(\bruch{1}{Y_t}\right) [/mm] = [mm] -\bruch{1}{Y_t^2}dY_t [/mm] + [mm] \bruch{1}{Y_t^3}d_t [/mm] = [mm] -\bruch{1}{Y_t^2} a^2(-\varphi^2_t)dt [/mm] + 0 = [mm] \bruch{a^2\varphi^2_t}{Y_t^2} [/mm] dt$
Also das gleiche wie oben
Nun können wir mit der Produktformel den gesamten Spaß als Produkt von Prozessen ausdrücken, die wir kennen.
Zur Erinnerung die Produktformel:
[mm] $X_tY_t [/mm] = [mm] \integral_0^t Y_s dX_s [/mm] + [mm] \integral_0^t X_s dY_s [/mm] + <X,Y>_t$
Bzw in Differentialschreibweise:
[mm] $d(X_tY_t) [/mm] = [mm] Y_s dX_s [/mm] + [mm] X_s dY_s [/mm] + d<X,Y>_t$
[mm] $d\left(\bruch{a\varphi_tx - a^2\varphi_t\integral_0^t \varphi_s dB_s}{a^2\integral_t^T \varphi^2_s ds + (1-a)^2}\right) [/mm] = [mm] d\left(\bruch{X_t}{Y_t}\right) [/mm] = [mm] d(X_tZ_t) [/mm] = [mm] X_tdZ_t [/mm] + [mm] Z_tdX_t [/mm] + <X,Z>_t $
$= [mm] X_t \bruch{a^2\varphi^2_t}{Y_t^2} [/mm] dt + [mm] Z_t \left(ax\varphi'_t dt + a^2\varphi'_t \integral_0^t \varphi_s dB_s dt + a^2\varphi^2_t dB_t\right) [/mm] + 0$
$= [mm] X_t \bruch{a^2\varphi^2_t}{Y_t^2} [/mm] dt + [mm] \bruch{1}{Y_t} \left(ax\varphi'_t dt + a^2\varphi'_t \integral_0^t \varphi_s dB_s dt + a^2\varphi^2_t dB_t\right) [/mm] + 0$
Und um es jetzt annähernd auf deine Form zu bringen, mal [mm] $Y_t^2$ [/mm] in den Nenner holen:
[mm] $\bruch{X_t a^2\varphi^2_t dt + Y_t\left(ax\varphi'_t dt + a^2\varphi'_t \integral_0^t \varphi_s dB_s dt + a^2\varphi^2_t dB_t\right)}{Y_t^2}$
[/mm]
Ob das nun mit deinem Übereinstimmt, kannst du selbst nachrechnen.
Ist ja "nur" umformen und nix mehr zum Ableiten oder so....
Sortiert man das aber nach dt und [mm] dB_t [/mm] Termen so erhält man sofort:
$= [mm] \bruch{X_ta^2\varphi_t^2 + Y_t\left(ax\varphi^2_t + a^2 \varphi'_t\integral_0^t \varphi_s dB_s\right)}{Y_t^2} [/mm] dt + [mm] \bruch{a^2\varphi^2_t}{Y_t}dB_t$
[/mm]
MFG,
Gono.
|
|
|
|
|
> [mm]= X_t \bruch{a^2\varphi^2_t}{Y_t^2} dt + Z_t \left(ax\varphi'_t dt + a^2\varphi'_t \integral_0^t \varphi_s dB_s dt + a^2\varphi^2_t dB_t\right) + 0[/mm]
muss bei + [mm] a^2\varphi^2_t dB_t [/mm] kein minus davor?
> [mm]= \bruch{X_ta^2\varphi_t^2 + Y_t\left(ax\varphi^2_t + a^2 \varphi'_t\integral_0^t \varphi_s dB_s\right)}{Y_t^2} dt + \bruch{a^2\varphi^2_t}{Y_t}dB_t[/mm]
>
Sollte es nicht [mm] Y_t(ax\varphi'_t [/mm] .. heißen?
|
|
|
|
|
Hiho,
> muss bei + [mm]a^2\varphi^2_t dB_t[/mm] kein minus davor?
Ja. Auch beim [mm] $a^2\varphi'_t \int_0^t \ldots dB_s [/mm] dt$
Das passiert, wenn man die Ableitungen nicht gleich oben mit aufschreibt ^^
> Sollte es nicht [mm]Y_t(ax\varphi'_t[/mm] .. heißen?
Ja.
MFG,
Gono.
|
|
|
|